Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Expanding the scope of application and evaluating the metrological characteristics of the method of determination of organic carbon in wastes of mining, processing and combustion of coal

https://doi.org/10.26896/1028-6861-2024-90-12-16-26

Abstract

The organic carbon content is one of the marker indicators for wastes of mining, processing and combustion of coal, which reflect the quality of drilling and blasting operations carried out at the deposit, enrichment and safety of gold and slag waste and fly ash. The article presents the results of studies on establishing the scope of application and evaluating the metrological characteristics of a developed analytical procedure for determination of organic carbon in samples of wastes of mining, processing and combustion of solid mineral fuel using the gravimetric method. The applicability of the procedure for rock samples containing pyrites, as well as the completeness of carbon extraction for coal samples of different degrees of metamorphism (brown, hard and anthracite) were tested using thermogravimetric analysis with mass spectroscopic detection (TGA/MS), which allows conducting a qualitative analysis of volatile substances (water, oxides of sulfur and carbon) released from the analyzed samples under the influence of high temperature. The scope of application and measurement range of the measurement procedure were confirmed by studying real samples of wastes of mining, processing and combustion of coal and specially prepared samples based on sequential ashing of coal samples. The absence of systematic bias in the measurement results according to the measurement procedure was established by analyzing attested samples based on rock samples, a standard sample of rock composition (mudstone) GSO 7223–96 (containing no carbon) and a standard sample of coal composition GSO 10877–2017 (with a specified carbon content) prepared by the addition method and the dilution method. The measurement procedure was certified and assigned registration number FR.1.31.2023.46507 in the Federal Information Fund for Ensuring the Uniformity of Measurements. The prospects for using the measurement procedure to characterize matrix reference materials required for constructing calibration characteristics of express infrared carbon analyzers are considered.

About the Authors

O. S. Golynets
UNIIM — Affiliated Branch of the D. I. Mendeleyev Institute for Metrology; National University of Science and Technology «MISIS»
Russian Federation

Olga S. Golynets,

4, Krasnoarmeiskaya ul., Yekaterinburg, 620075;

4, Leninskii prosp., Moscow, 119049.



M. Yu. Medvedevskikh
National University of Science and Technology «MISIS»
Russian Federation

Maria Yu. Medvedevskikh,

4, Leninskii prosp., Moscow, 119049



Svetlana A. Epshtein
National University of Science and Technology «MISIS»
Russian Federation

Svetlana A. Epshtein,

4, Leninskii prosp., Moscow, 119049.



O. S. Shokhina
UNIIM — Affiliated Branch of the D. I. Mendeleyev Institute for Metrology
Russian Federation

Olga S. Shokhina,

4, Krasnoarmeiskaya ul., Yekaterinburg, 620075.



A. S. Sergeeva
UNIIM — Affiliated Branch of the D. I. Mendeleyev Institute for Metrology
Russian Federation

Anna S. Sergeeva,

4, Krasnoarmeiskaya ul., Yekaterinburg, 620075.



References

1. Zhang J., Yang K., He X., et al. Research status of comprehensive utilization of coal-based solid waste (CSW) and key technologies of filling mining in China: A review / Sci. Total Environ. 2024. Vol. 926. 171855. DOI: 10.1016/j.scitotenv.2024.171855

2. Li H. Q., Hu Y. Y., Li S. P., et al. Recycling and product chain of coal-based solid waste / Resour. Sci. 2021. Vol. 43. N 3. P. 456 – 464. DOI: 10.18402/resci.2021.03.03

3. Ferreira L. P., Müller T. G., Cargnin M., et al. Valorization of waste from coal mining pyrite beneficiation / J. Environ. Chem. Eng. 2021. Vol. 9. N 4. 105759. DOI: 10.1016/j.jece.2021.105759

4. Zhao X., Yang K., Dino G. A., et al. Feasibility and challenges of multi-source coal-based solid waste (CSW) for underground backfilling — A case study / Process Saf. Environ. Prot. 2024. Vol. 181. P. 8 – 25. DOI: 10.1016/j.psep.2023.11.013

5. Bartoňová L. Unburned carbon from coal combustion ash: An overview / Fuel Process. Technol. 2015. Vol. 134. P. 136 – 158. DOI: 10.1016/j.fuproc.2015.01.028

6. Heidrich C., Feuerborn H. J., Weir A. Coal Combustion Products: a Global Perspective / World of Coal Ash Conference, 2013, Lexington, KY.

7. Xing Y., Guo F., Xu M., et al. Review. Separation of unburned carbon from coal fly ash: A review / Powder Technol. 2019. Vol. 353. P. 372 – 384. DOI: 10.1016/j.powtec.2019.05.037

8. Lin L., Hui Z., Jie Y., et al. Original Research Paper. Rapid detection of loss on ignition for unburned carbon powder in fly ash triboelectric separation based on image recognition and machine learning / Adv. Powder Technol. 2024. Vol. 35. N 4. 104422. DOI: 10.1016/j.apt.2024.104422

9. Lv B., Jiao F., Chen Z., et al. Separation of unburned carbon from coal fly ash: Pre-classification in liquid — solid fluidized beds and subsequent flotation / Process Saf. Environ. Prot. 2022. Vol. 165. P. 408 – 419. DOI: 10.1016/j.psep.2022.07.031

10. Lv B., Deng X., Jiao F., et al. Enrichment and utilization of residual carbon from coal gasification slag: A review / Process Saf. Environ. Prot. 2023. Vol. 171. P. 859 – 873. DOI: 10.1016/j.psep.2023.01.079

11. Sergeeva A. S., Golynets O. S., Medvedevskikh M. Yu., et al. Comparison of methodological approaches to the determination of organic carbon in wastes of mining, processing and combustion of coal / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 5. P. 5 – 13 [in Russian]. DOI: 10.26896/1028-6861-2023-89-5-5-13

12. Medvedevskikh M. Yu., Krasheninina M. P., Sergeeva A. S., Shokhina O. S. A reference installation based on thermo-gravimetric analysis with mass-spectrometric detection as a part of the state primary standard GET 173 / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 6. P. 63 – 70 [in Russian]. DOI: 10.26896/1028-6861-2018-84-6-63-68

13. Gorshkov V. V., Koryakov V. I., Medvedevskikh M. Yu., Medvedevskikh S. V. State primary standard of unit of mass fraction and unit of mass concentration of moisture in solid substances and solid fabricated materials / Meas. Tech. 2010. Vol. 53. N 4. P. 386 – 390. DOI: 10.1007/s11018-010-9515-9

14. Medvedevskikh M. Y., Sergeeva A. S., Krasheninina M. P., Shokhina O. S. Creating reference standards for the implementation of the state verification scheme for water content measurement / Meas. Tech. 2019. Vol. 62. N 6. P. 475 – 483. DOI: 10.1007/s11018-019-01649-3

15. Mitchell J., Smith D. Aquametry: A treatise on methods for the determination of water. 2nd edition. — New York: Wiley, 1977. — 662 p.

16. Liu L., Liu Q., Zhang S., et al. The thermal transformation behavior and products of pyrite during coal gangue combustion / Fuel. 2022. Vol. 324. Part C. 124803. DOI: 10.1016/j.fuel.2022.124803

17. Murphy R., Strongin D. R. Surface reactivity of pyrite and related sulfides / Surf. Sci. Rep. 2009. Vol. 64. N 1. P. 1 – 45. DOI: 10.1016/j.surfrep.2008.09.002

18. Ding C., Li Z., Wang J., et al. Experimental research on the spontaneous combustion of coal with different metamorphic degrees induced by pyrite and its oxidation products / Fuel. 2022. Vol. 318. 123642. DOI: 10.1016/j.fuel.2022.123642

19. Yan J., Xu L., Yang J. A study on the thermal decomposition of coal-derived pyrite / J. Anal. Appl. Pyrolysis. 2008. Vol. 82. N 2. P. 229 – 234. DOI: 10.1016/j.jaap.2008.03.013

20. Abraitis P. K., Pattrick R. A. D., Vaughan D. J. Variations in the compositional, textural and electrical properties of natural pyrite: a review / Int. J. Miner. Process. 2004. Vol. 74. N 1 – 4. P. 41 – 59. DOI: 10.1016/j.minpro.2003.09.002

21. Zhang K., Liu L., Liu L., et al. Iron removal from kaolinitic coal gangue via magnetic separation after oxidizing calcination with the crystal structure of kaolinite protected / Materials Today Commun. 2023. Vol. 37. 107175. DOI: 10.1016/j.mtcomm.2023.107175

22. Das A., Peu S. D., Hossain M. S., et al. Advancements in adsorption based carbon dioxide capture technologies — A comprehensive review / Heliyon. 2023. Vol. 9. N 12. e22341. DOI: 10.1016/j.heliyon.2023.e22341

23. Cheng H., Liu Q., Huang M., et al. Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite / Thermochim. Acta. 2013. Vol. 555. P. 1 – 6. DOI: 10.1016/j.tca.2012.12.025

24. Tsze Kh., Kochetkova E. M., Epshtein S. A. Mobility of the Major and Trace Elements in the Coal Mining Waste / Khim. Tv. Topl. 2023. N 4. P. 64 – 72 [in Russian]. DOI: 10.31857/S0023117723040047

25. Solov’ev P. P. Handbook of Mineralogy. — Leningrad – Moscow: Metallurgizdat, 1948. — 516 p. [in Russian].


Review

For citations:


Golynets O.S., Medvedevskikh M.Yu., Epshtein S.A., Shokhina O.S., Sergeeva A.S. Expanding the scope of application and evaluating the metrological characteristics of the method of determination of organic carbon in wastes of mining, processing and combustion of coal. Industrial laboratory. Diagnostics of materials. 2024;90(12):16-26. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-12-16-26

Views: 221


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)