

Measurement and calculation of stable growth of fatigue cracks
https://doi.org/10.26896/1028-6861-2024-90-12-45-64
Abstract
Comprehensive multiscale study of fatigue crack kinetics (FCK) in aircraft engine disks and samples from heat-resistant titanium and nickel alloys is presented. The aim of the studies was to determine the possibility of microfractographic reconstitution and calculated prediction of stable fatigue crack growth based on the measurement and calculation of fatigue striation spacing S. The studies included micro- and macrofractographic measurements of stable crack growth (according to fatigue striation spacing, measured by scanning electron microscopy with high resolution, and to the marker lines determining positions of the crack macrofront after a certain number of loading cycles) and comparing their results, finite element modeling of cracks and calculating the stress intensity factor (SIF) range ΔK, calculated prediction of FCK using kinetic equation S(ΔK), obtained earlier on the basis of physical and mathematical modeling of stable fatigue crack growth mechanism, comparison of prediction results with fractographic data. Because of the study, it is shown that the average value of S characterizes fatigue crack growth rate (FCGR) during the entire stage of stable growth of the fatigue crack, corresponding to the second section of the kinetic diagram «FCGR – SIF range». The use of equation S(ΔK) makes it possible to predict the stable growth of fatigue cracks of different configurations in parts and specimens from structural materials with different crystal structure and microstructure under different loading conditions. The obtained results are of particular importance for ensuring safe operation of high-stress rotary parts of aero engines, in which the duration of stable growth of low cycle fatigue cracks reaches 70 % of the total cyclic life, and fatigue striation spacing is the only measurable characteristic of stable growth rate under service conditions.
About the Authors
N. V. TumanovRussian Federation
Nikolay V. Tumanov,
2, Aviamotornaya ul., Moscow, 111116.
M. A. Lavrentyeva
Russian Federation
Marina A. Lavrentyeva,
2, Aviamotornaya ul., Moscow, 111116.
S. A. Cherkasova
Russian Federation
Svetlana A. Cherkasova,
2, Aviamotornaya ul., Moscow, 111116.
N. A. Vorobjeva
Russian Federation
Nina A. Vorobjeva,
2, Aviamotornaya ul., Moscow, 111116.
M. E. Volkov
Russian Federation
Mikhail E. Volkov,
2, Aviamotornaya ul., Moscow, 111116.
Yu. L. Mitina
Russian Federation
Yuliya L. Mitina,
2, Aviamotornaya ul., Moscow, 111116.
A. I. Kalashnikova
Russian Federation
Aleksandra I. Kalashnikova,
2, Aviamotornaya ul., Moscow, 111116.
References
1. Romaniv O. N., Zima Yu. V. Quantitative microfractography of fatigue fracture of metals and alloys / Standardization of fractographic method for estimating the fatigue fracture rate of metals. Issue 5 / O. N. Romaniv, Ed. — Moscow: Izd. standartov, 1984. P. 6 – 30 [in Russian].
2. Botvina L. R., Limar’ L. V., Lozovskii V. N. On the issue of estimating the duration of crack growth by the / Standardization of the fractographic method for estimating the fatigue fracture rate of metals. Issue 5 / O. N. Romaniv, Ed. — Moscow: Izd. standartov, 1984. P. 38 – 54 [in Russian].
3. Methodological recommendation MR 189–86. Strength analysis and tests. Method of metal fatigue estimation based on fatigue striations spacing measurement. — Moscow: VNIINMASh, 1986. — 36 p. [in Russian].
4. Botvina L. R. Fracture kinetics of structural materials. — Moscow: Nauka, 1989. — 230 p. [in Russian].
5. Botvina L. R. Fundamentals of fractodiagnostics. — Moscow: Tekhnosfera, 2022. — 393 p. [in Russian].
6. Klevtsov G. V., Botvina L. R., Klevtsova N. A., Limar’ L. V. Failure analysis of metallic materials and structures. — Moscow: MISiS, 2007. — 264 p. [in Russian].
7. Limar’ L. V. Failure analysis of aviation parts made from titanic alloys. — Verkhnyaya Salda: Korporatsiya «VSMPO-AVISMA», 2011. — 157 p. [in Russian].
8. Yokobori T. Scientific bases of strength and fracture. — Kiev: Naukova dumka, 1978. — 352 p. [Russian translation].
9. Kishkina S. I. Fracture resistance of aluminium alloys. — Moscow: Metallurgiya, 1981. — 280 p. [in Russian].
10. Machine construction. Encyclopedia. Physical and mechanical properties. Tests of metallic materials. Vol. II-1. — Moscow: Mashinostroenie, 2010. — 852 p. [in Russian].
11. González-Velázquez J. L. Fractography and failure analysis. — Cham: Springer, 2018. — 165 p.
12. McEvily A. J. Metal failures: mechanisms, analysis, prevention. — Hoboken, NJ: John Wiley & Sons, 2013. — 479 p.
13. Tumanov N. V. Staging of fatigue crack kinetics: patterns and features / Industr. Lab. Mater. Diagn. 2024. Vol. 90. N 1. P. 58 – 71 [in Russian]. DOI: 10.26896/1028-6861-2024-90-1-58-71
14. Tumanov N. V., Vorob’eva N. A., Kalashnikova A. I., et al. Computational and fractographic study of stable growth of low-cycle fatigue cracks in the disk of aero engine turbine under complex loading cycles / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 4. P. 52 – 60 [in Russian]. DOI: 10.26896/1028-6861-2021-87-4-52-60
15. Hertzberg R. W., Paris P. C. Application of electron fractography and fracture mechanics to fatigue crack propagation / T. Yokobori, T. Kawasaki, J. L. Swedlow, Eds. Proc. 1st Int. Conf. on Fracture. Vol. 1. — Japanese Society for Strength and Fracture of Materials, 1966. P. 459 – 478.
16. Bates R. C., Clark W. G. Fractography and fracture mechanics / Trans. ASM. 1969. Vol. 62. N 2. P. 380 – 389.
17. Mills W. J., James I. A. The fatigue-crack propagation response of two nickel-base alloys in a liquid sodium environment / Trans. ASME: Journal of engineering materials and technology. 1979. Vol. 101. N 3. P. 205 – 213.
18. Ivanova V. S., Shanyavskii A. A. Quantitative fractography. Fatigue fracture. — Chelyabinsk: Metallurgiya, 1988. — 400 p. [in Russian].
19. McEvily A. J., Matsunaga H. On fatigue striations / Scientia Iranica: Transaction on mechanical engineering (B). 2010. Vol. 17. N 1. P. 75 – 82.
20. Matokhnyuk L. E., Yakovleva T. Yu. Influence of loading frequency on regularities and micromechanisms of fatigue crack growth in titanic alloys / Probl. Prochn. 1988. N 1. P. 21 – 31 [in Russian].
21. Yakovleva T. Yu. Local plastic deformation and fatigue of metals. — Kiev: Naukova dumka, 2003. — 236 p. [in Russian].
22. Tumanov N. V., Lavrent’eva M. A., Cherkasova S. A. Reconstruction and prediction of fatigue crack growth in aero engine disks / Konvers. Mashinostr. 2005. N 4 – 5. P. 98 – 106 [in Russian].
23. Rybin V. V., Patsiornykh A. I., Polyektov Yu. I. Features of high-strength cast steels fracture under low cycle fatigue / Probl. Prochn. 1975. N 6. P. 32 – 39 [in Russian].
24. Tumanov N. V. Steady fatigue crack growth: micromechanism and mathematical modeling / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 11. P. 52 – 69 [in Russian]. DOI: 10.26896/1028-6861-2018-84-11-52-69
25. Nozhnitskii Yu. A., Baluev B. A., Fedina Yu. A., Shadrin D. V. Modernization of experimental base for investigation of gas turbine engine integrity / Vestn. Perm. Natsional. Issled. Politekhn. Univ. Aérokosm. Techn. 2019. N 57. P. 55 – 69 [in Russian]. DOI: 10.15593/2224-9982/2019.57.05
26. Siratori M., Miyosi T., Matsusita H. Computing fracture mechanics. — Moscow: Mir, 1986. — 334 p. [Russian translation].
27. Stress intensity factors handbook. In 2 volumes. Vol. 1 / Y. Murakami, Ed. — Moscow: Mir, 1990. — 448 p. [Russian translation].
28. Nozhnitskii Yu. A., Tumanov N. V., Cherkasova S. A., Lavrent’eva M. A. Fractographic methods of residual life estimation for aero engine disks / Vestn. Ufim. Gos. Aviats. Tekhn. Univ. 2011. Vol. 16. N 4(44). P. 39 – 45 [in Russian].
29. Tumanov N. V., Cherkasova S. A., Lavrent’eva M. A., Vorob’eva N. A. Study of mechanisms of low cycle fatigue crack growth in aero engine disks and estimation of disks residual life / Vestn. Samar. Gos. Aérokosm. Univ. 2011. N 3(27). Part 2. P. 175 – 184 [in Russian].
30. Tumanov N. V., Lavrent’eva M. A., Vorob’eva N. A., et al. Survivability resource of aero engine disks: prediction, verification, practical use / Strength and reliability of gas turbine engines / Yu. A. Nozhnitskii, Ed. — Moscow: CIAM, 2020. P. 34 – 56 [in Russian].
31. Tumanov N. V., Lavrent’eva M. A., Cherkasova S. A., Servetnik A. N. Modeling of steady fatigue crack growth in aero engine disks under simple and complex loading cycles / Vestn. Samar. Gos. Aérokosm. Univ. 2009. N 3(19). Part 1. P. 188 – 199 [in Russian].
32. Tumanov N. V., Lavrent’eva M. A. Prediction of aero engine disks cyclic life based on modeling steady growth of low cycle fatigue cracks / Aviats. Dvig. 2019. N 1(2). P. 37 – 48 [in Russian].
33. Tumanov N. V., Porter A. M., Lavrent’eva M. A., et al. Multi-scale complex fractodiagnostics of aero engine compressor disks / Vestn. Samar. Gos. Aérokosm. Univ. 2010. N 4(24). P. 98 – 112 [in Russian].
34. Sachin V. M., Tumanov N. V., Lavrent’eva M. A., Cherkasova S. A. Complex fractodiagnostics of aero engine fan blades flatter / Vestn. Samar. Gos. Aérokosm. Univ. 2011. N 3(27). Part 2. P. 185 – 194 [in Russian]
Review
For citations:
Tumanov N.V., Lavrentyeva M.A., Cherkasova S.A., Vorobjeva N.A., Volkov M.E., Mitina Yu.L., Kalashnikova A.I. Measurement and calculation of stable growth of fatigue cracks. Industrial laboratory. Diagnostics of materials. 2024;90(12):45-64. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-12-45-64