

A comparison of results of determining the hydrocarbon group-type composition of petroleum samples obtained using various test methods of open-column liquid chromatography
https://doi.org/10.26896/1028-6861-2025-91-1-5-14
Abstract
The hydrocarbon group-type composition (so-called SARA-composition) is one of the main characteristics of oil, providing an information about its chemical nature and determining the quality of the obtained petroleum products. In world laboratory practice, data on the hydrocarbon group-type composition of petroleum feedstock are widely used to assess its colloidal stability and compatibility with crude oil, reactivity in various conversion processes, predicting physical properties, etc. Traditionally, the hydrocarbon group-type composition is determined in accordance with standard and research chromatographic methods that differ significantly from each other, which often leads to obtaining incomparable analytical results. In this paper, a comparative analysis of the results of determining the hydrocarbon group-type composition obtained in accordance with two test methods within the open-column liquid chromatography method is carried out for various of petroleum samples of Russian origin (commercial oils of different classes and two petroleum products). Using the standard test method ASTM D4124 (method B) and the research test method developed by JSC VNII NP, the content of identical hydrocarbon groups in the maltene part of petroleum samples was determined: saturated hydrocarbons (SH) and paraffinic-naphthenic hydrocarbons (PNH), naphthenic aromatic (NAH) and aromatic hydrocarbons (AH), polar aromatic hydrocarbons (PAH) and resins (R), respectively. It is shown that with an increase the density and viscosity of petroleum samples, the content of less polar groups (SH and PNH) in their composition decreases and the content of more polar groups (PAH and R) obviously increases, and there is no pronounced distribution pattern of the NAH and AH groups. Statistical processing revealed insignificant differences in the results for «heavy and viscous» oils, despite the large error of those obtained according to the research test method. Obtaining comparable results justifies the use of both test methods not only for the analysis of high-boiling petroleum products, but also for the analysis «heavy and viscous» oil samples.
About the Authors
D. I. PanyukovaRussian Federation
Daria I. Panyukova
19, Kosygina ul., 119334, Moscow
K. Ossipov
Russian Federation
Konstantin Ossipov
4, Nauchny per., Moscow obl., Dolgoprudny, 141700
E. Yu. Savonina
Russian Federation
Elena Yu. Savonina
19, Kosygina ul., 119334, Moscow
T. A. Maryutina
Russian Federation
Tatiana A. Maryutina
19, Kosygina ul., 119334, Moscow
References
1. Speight J. G. Handbook of heavy oil properties and analysis. — Hoboken, New Jersey: John Wiley & Sons, Inc., 2023. — 496 p.
2. Stratiev D., Shishkova I., Palichev G. N., et al. Study of bulk properties relation to SARA composition data of various vacuum residues employing intercriteria analysis / Energies. 2022. Vol. 15. N 23. P. 9042 – 9063. DOI: 10.3390/en15239042
3. Shishkova I., Stratiev D., Kolev I. V., et al. Challenges in petroleum characterization — A Review / Energies. 2022. Vol. 15. N 20. P. 7765 – 7798. DOI: 10.3390/en15207765
4. Karevan A., Zirrahi M., Hassanzadeh H. Standardized high-performance liquid chromatography to replace conventional methods for determination of Saturate, Aromatic, Resin, and Asphaltene (SARA) Fractions / ACS Omega. 2022. Vol. 7. N 22. P. 18897 – 18903. DOI: 10.1021/acsomega.2c01880
5. Schwettmann K., Hohne P., Stephan D. Comparison of column chromatography and solid-phase extraction on virgin and aged bituminous maltene phases / Mater. Struct. 2022. Vol. 55. N 242. P. 1 – 17. DOI: 10.1617/s11527-022-02079-4
6. Wojewódka D., Dyguła P., Przyjazny A., Kamiński M. A novel thin layer chromatography-flame ionization detection method for saturated, asphaltenes, resins, and asphaltenes group-type composition analysis with reverse order of chromatogram development / J. Sep. Sci. 2023. Vol. 46. N 21. P. 1 – 9. DOI: 10.1002/jssc.202300198
7. Karevan A. Development of New Chromatographic Approaches for bitumen Characterization / A Thesis (Calgary, Alberta) submitted to the faculty of graduate studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy, 2023. — 125 p.
8. Bisht H., Reddy M., Malvanker M., Patil R. C., et al. Efficient and quick method for saturates, aromatics, resins, and asphaltenes analysis of whole crude oil by thin-layer chromatography-flame ionization detector / Energy Fuels. 2013. Vol. 27. N 6. P. 3006 – 3013. DOI: 10.1021/ef4002204
9. Guzman R., Rodríguez S., Torres-Mancera P., Ancheyta J. Evaluation of asphaltene stability of a wide range of Mexican crude oils / Energy Fuels. 2021. Vol. 35. N 1. P. 408 – 418. DOI: 10.1021/acs.energyfuels.0c03301
10. Panyukova D. I., Savonina E. Yu., Ossipov K., Maryutina T. A. Determination the hydrocarbon group-type composition of petroleum feedstocks and products through foreing experience / J. Anal. Chem. 2024. Vol. 79. N 4. P. 366 – 378. DOI: 10.1134/S1061934824040117
11. Savonina E. Yu., Panyukova D. I. State of the art and properties for the development of methods for determining the group hydrocarbon composition (SARA Composition) of crude oil and petroleum products / Russ. J. Appl. Chem. 2023. Vol. 96. N 5. P. 503 – 524. DOI: 10.1134/S1070427223050014
12. Jarne C., Cebolla V. L., Membrado L., et al. Gradient high-performance thin-layer chromatography for characterizing complex hydrocarbon-containing products / J. Planar Chromatogr. — Mod. TLC. 2023. Vol. 36. N 3. P. 335 – 349. DOI: 10.1007/s00764-023-00256-x
13. Shiskova I., Stratiev D., Sotirov S., et al. Predicting petroleum SARA Composition from density, sulfur content, flash point, and simulated distillation data using regression and artificial neural network techniques / Processes. 2024. Vol. 12. N 8. P. 1755 – 1780. DOI: 10.3390/pr12081755
14. Rezaee S., Tavakkoli M., Doherty R., Vargas F. M. A new experimental method for a fast and reliable quantification of saturates, aromatics, resins, and asphaltenes in crude oils / Petroleum Sci. Technol. 2020. Vol. 38. N 21. P. 955 – 961. DOI: 10.1080/10916466.2020.1790598
15. Kheirollahi S., BinDahbag M., Bagherzadeh H., et al. Improved determination of saturate, aromatic, resin, and asphaltene (SARA) fractions using automated high-performance liquid chromatography approach / Fuel. 2024. N 371. P. 131884 – 131891. DOI: 10.1016/j.fuel.2024.131884
16. Kharrat A. M., Zacharia J., Cherian V. J., Anyatonwy A. Issues with comparing SARA methodologies / Energy Fuels. 2007. Vol. 21. N 6. P. 3618 – 3621. DOI: 10.1021/ef700393a
17. Stratiev D., Shishkova I., Nikolova R., et al. Investigation on precision of determination of SARA analysis of vacuum residual oils from different origin / Pet. Coal. 2016. Vol. 58. N 1. P. 109 – 119.
18. Stratiev D., Shishkova I., Tankov I., Pavlova A. Challenges in characterization of residual oils. A review / J. Pet. Sci. Eng. 2019. Vol. 178. P. 227 – 250. DOI: 10.1016/j.petrol.2019.03.026
19. Vempatapu B. P., Kumar J., Upreti B., Kanaujia P. K. Application of high-performance liquid chromatography in petroleum analysis: Challenges and opportunities / Trends Anal. Chem. 2024. Vol. 177. P. 117810 – 117822. DOI: 10.1016/j.trac.2024.117810
20. Panyukova D. I., Ossipov K., Maryutina T. A. Study of the distribution of microelements in oil hydrocarbon groups / Industr. Lab. Mater. Diagn. 2024. Vol. 90. N 1. P. 26 – 33 [in Russian]. DOI: 10.26896/1028-6861-2024-90-1-26-33
21. Ossipov K. B., Mokochunina T. V., Panyukova D. I., et al. Influence of water salinity on effectiveness of oil dispersants / Inorg. Mat. 2023. Vol. 59. N 14. P. 1443 – 1448. DOI: 10.1134/S002016852314011X
22. Kalgin Yu. I., Strokin A. S., Tyukov E. B. Testing of road bitumen and asphalt concrete mixtures: laboratory workshop. — Voronezh: Voronezh State Technical University, 2021. — 93 p. [in Russian].
23. Garmash A. V., Sorokina N. M. Metrological principles of analytical chemistry. — Moscow: Lomonosov Moscow State University, 2017. — 52 p. [in Russian].
Review
For citations:
Panyukova D.I., Ossipov K., Savonina E.Yu., Maryutina T.A. A comparison of results of determining the hydrocarbon group-type composition of petroleum samples obtained using various test methods of open-column liquid chromatography. Industrial laboratory. Diagnostics of materials. 2025;91(1):5-14. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-1-5-14