Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Improvement of the method of digital image correlation in the field of analyzing the processes of deformation and fracture of composites

https://doi.org/10.26896/1028-6861-2025-91-1-60-68

Abstract

The paper reflects new experimental results describing the processes of deformation and fracture of composites with significant structural heterogeneity with concentrators. A large-scale approach to the development of the method of digital image correlation (DIC) under complex modes of external influences is proposed. A number of methods of fixation of recorded data under cyclic impacts are considered. The peculiarities of each of the presented ways of data fixation depending on the main purpose of the research on the basis of static and cyclic tests of carbon fiber reinforced plastic specimens are outlined. Recommendations on the use of «analog capture» and «flex capture» options of the program «vic snap» are presented. The recommendations are valid for solving problems related to the analysis of regularities of deformation and fracture of objects with structural heterogeneity made of polymer composite materials under different modes of external loading. The study reflects the main methodological peculiarities arising when working with the non-contact optical video system VIC-3D and the method of correlation of digital images on polymer composite materials. Deformations at the structural and macroscopic levels are compared. Recommendations on the selection of post-treatment parameters, namely the step in the calculation by the KCI method, are proposed. A method of reducing the edge effect arising during uniaxial tensile testing of specimens with a concentrator is proposed. As a result of these studies, it becomes possible to obtain new experimental data on the processes of defect development and macroscopic fracture zones in the hole region, avoiding the influence of the edge zone.

About the Authors

E. M. Strungar
Perm National Research Polytechnic University
Russian Federation

Elena M. Strungar

29, Komsomolsky prosp., 614990, Perm’



D. S. Lobanov
Perm National Research Polytechnic University
Russian Federation

Dmitrii S. Lobanov

29, Komsomolsky prosp., 614990, Perm’



O A. Staroverov
Perm National Research Polytechnic University
Russian Federation

Oleg A. Staroverov

29, Komsomolsky prosp., 614990, Perm’



K. A. Pelenev
Perm National Research Polytechnic University
Russian Federation

Konstantin A. Pelenev

29, Komsomolsky prosp., 614990, Perm’



References

1. Kaminski M., Laurin F., Maire F. J., et al. Fatigue damage modeling of composite structures: the ONERA viewpoint / AerospaceLab. 2015. N 9. P. 1 – 12. DOI: 10.12762/2015.AL09-06

2. Makhutov N. A., Gadenin M. M. Study of the generalized curves of the static and cyclic deformation, damage and fracture / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 5. P. 46 – 55 [in Russian]. DOI: 10.26896/1028-6861-2023-89-5-46-55

3. Degrieck J., Van Paepegem W. Fatigue damage modeling of fibre-reinforced composite materials: Review / ASME. Applied Mechanics Reviews. 2001. Vol. 54. N 4. P. 279 – 300. DOI: 10.1115/1.1381395

4. Panin S. V., Bogdanov A. A., Lyubutin P. S., et al. Optical strain measurement technique for estimating degradation of the properties of carbon fiber reinforced polymer composites under cyclic loading / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 1. P. 46 – 55 [in Russian]. DOI: 10.26896/1028-6861-2023-89-1-46-55

5. Makhutov N. A., Gadenin M. M., Yudina O. N. Analysis of the cyclic strength of technical systems in conditions of complex operation loading / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 10. P. 55 – 62 [in Russian]. DOI: 10.26896/1028-6861-2023-89-10-55-62

6. Matvienko Yu. G., Reznikov D. O., Kuzmin D. A., Potapov V. V. Assessment of the probability of the fatigue fracture of structural components subjected to deterministic and stochastic loading taking into account the scatter in the initial crack size / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 10. P. 44 – 53 [in Russian]. DOI: 10.26896/1028-6861-2021-87-10-44-53

7. Chen Y., Liu K., Xu Z., et al. A comprehensive experimental investigation of the rate-dependent interlaminar delamination behaviour of CFRP composites / Compos Part B. 2023. Vol. 261. 110788. DOI: 10.1016/j.compositesb.2023.110788

8. Harizi W., Chaki S., Bourse G., Ourak M. Damage mechanisms assessment of Glass Fiber-Reinforced Polymer (GFRP) composites using multivariable analysis methods applied to acoustic emission data / Composite Structures. 2022. Vol. 289. 115470. DOI: 10.1016/j.compstruct.2022.115470

9. Friedrich L., Colpo A., Maggi A., et al. Damage process in glass fiber reinforced polymer specimens using acoustic emission technique with low frequency acquisition / Composite Structures. 2021. Vol. 256. 113105. DOI: 10.1016/j.compstruct.2020.11310

10. Tumanov N. V. Staging of fatigue crack kinetics: patterns and features / Industr. Lab. Mater. Diagn. 2024. Vol. 90. N 1. P. 58 – 71 [in Russian]. DOI: 10.26896/1028-6861-2024-90-1-58-71

11. Khoshmanesh S., Watson S. J., Zarouchas D. The effect of the fatigue damage accumulation process on the damping and stiffness properties of adhesively bonded composite structures / Composite Structures. 2022. Vol. 287. 115328. DOI: 10.1016/j.compstruct.2022.115328

12. Alam P., Mamalis D., Robert C., et al. The fatigue of carbon fibre reinforced plastics — A review / Composites Part B: Engineering. 2019. Vol. 166. P. 555 – 579. DOI: 10.1016/j.compositesb.2019.02.016

13. Alves M., Pimenta S. A computationally-efficient micromechanical model for the fatigue life of unidirectional composites under tensiontension loading / Int. J. Fatigue. 2018. Vol. 116. P. 677 – 690. DOI: 10.1016/j.ijfatigue.2018.05.017

14. Anastasios P. Vassilopoulos Fatigue life prediction of composites and composite structures. 2nd Edition. 2019. P. 762. DOI: 10.1016/C2017-0-02509-0

15. Gu Y., Zhang D., Zhang Z., et al. Torsion damage mechanisms analysis of two-dimensional braided composite tubes with digital image correction and X-ray micro-computed tomography / Composite Structures. 2021. Vol. 256. 113020. DOI: 10.1016/j.compstruct.2020.113020

16. Xu D. H., Cerbu C., Wang H. W., Rosca I. C. Analysis of the hybrid composite materials reinforced with natural fibers considering digital image correlation (DIC) measurements / Mech. Mater. 2019. Vol. 135. P. 46 – 56. DOI: 10.1016/j.mechmat.2019.05.001

17. Azadi M., Saeedi M., Mokhtarishirazabad M., Lopez-Crespo P. Effects of loading rate on crack growth behavior in carbon fiber reinforced polymer composites using digital image correlation technique. Compos. Part B. Eng. 2019. Vol. 175. 107161. DOI: 10.1016/j.compositesb.2019. 107161

18. Harenberg S., Pahn M., Malárics-Pfaff V., et al. Digital image correlation strain measurement of ultra-high-performance concrete-prisms under static and cyclic bending-tensile stress / Structural Concrete. 2019. Vol. 20. P. 1220 – 1230. DOI: 10.1002/suco.201900033

19. Staroverov O., Mugatarov A., Yankin A., Wildemann V. Description of Fatigue Sensitivity Curves and Transition to Critical States of Polymer Composites by Cumulative Distribution Functions / Frattura Ed Integrità Strutturale. 2022. Vol. 17. N 63. P. 91 – 99. DOI: 10.3221/igf-esis.63.09

20. Staroverov O., Lobanov D., Strungar E., Lunegova E. Evaluation of the influence of preliminary low-velocity impacts on the residual fatigue life of CFRP composites / International Journal of Structural Integrity. 2023. Vol. 14. N 1. P. 44 – 56. DOI: 10.1108/ijsi-04-2022-0056

21. Wildemann V., Staroverov O., Strungar E., et al. Mechanical Properties Degradation of Fiberglass Tubes during Biaxial Proportional Cyclic Loading / Polymers. 2023. Vol. 15. N 9. 2017. DOI: 10.3390/polym15092017

22. Xu D. H., Cerbu C., Wang H. W., Rosca I. C. Analysis of the hybrid composite materials reinforced with natural fibers considering digital image correlation (DIC) measurements / Mech. Mater. 2019. Vol. 135. P. 46 – 56. DOI: 10.1016/j.mechmat.2019.05.001

23. Pankow M., Justusson B., Riosbaas M., et al. Effect of fiber architecture on tensile fracture of 3D woven textile composites / Compos. Struct. 2019. Vol. 225. DOI: 10.1016/j.compstruct.2019. 1111394

24. Strungar E. M., Lobanov D. S. Development of the digital image correlation (DIC) method for mechanical testing at elevated temperatures / PNRPU Mech. Bull. 2022. N 3. P. 147 – 159. DOI: 10.15593/perm.mech/2022.3.15


Review

For citations:


Strungar E.M., Lobanov D.S., Staroverov O.A., Pelenev K.A. Improvement of the method of digital image correlation in the field of analyzing the processes of deformation and fracture of composites. Industrial laboratory. Diagnostics of materials. 2025;91(1):60-68. https://doi.org/10.26896/1028-6861-2025-91-1-60-68

Views: 214


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)