Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of tribological properties of surface MAO composites on D16T alloy

https://doi.org/10.26896/1028-6861-2025-91-1-69-78

Abstract

Operation of mechanical engineering products operating under conditions of intensive wear at high rotation speeds and loads leads to their inevitable wear and significant metal losses. One of the methods for obtaining wear-resistant surfaces on products, for example, friction pair parts, is the microarc oxidation (MAO) method of aluminum alloys. The method allows obtaining dense hard surface wear-resistant composites based on α-Al2O3 (corundum) and γ-Al2O3. The structure, composition and surface quality of the resulting MAO coating significantly affect the performance characteristics of the product surface. The aim of the work is to determine the effect of porosity (10 and 16%) and surface roughness (Ra, equal to 2.7 and 0.51 μm) of MAO composites on D16T alloy on tribological properties and to evaluate the possibility of using MAO coatings in friction pairs, including end seals, under dry friction conditions. Comparative tests were carried out on an SMT-1 machine under dry friction conditions at a specific pressure in the friction pair of P = 0.5 MPa; the duration of the experiment was 90 – 91 min for each friction pair. The studies have shown that in many friction pairs, various types of damage (destruction) of the coating integrity, as well as deep abrasive wear, occurred. The porosity of the MAO coating in the range of 10 – 16% at different roughness values does not affect the abrasive wear of the coating. However, a porosity of 10% and a surface roughness of no more than Ra ≤ 0.51 ± 0.12 μm are preferable for achieving better tribological characteristics of surface MAO composites on D16T aluminum alloy.

About the Authors

O. V. Somov
LLC Research and Production Enterprise Polygon-MT
Russian Federation

Oleg V. Somov

3, NATI ul., Novy Byt, Chekhov, Moscow oblast’, 142322



V. A. Vasin
LLC Research and Production Enterprise Polygon-MT
Russian Federation

Vladimir A. Vasin

3, NATI ul., Novy Byt, Chekhov, Moscow oblast’, 142322



References

1. Ramazanova Zh. M., Zamalitdinova M. G., Baidauletova M. Zh., Kovalenko M. V. Effect of micro arc oxidation on the properties of aluminum alloy samples / Kompl. Ispol’z. Min. Syr’ya. 2023. N 2(325). С. 39 – 46. DOI: 10.31643/2023/6445.16

2. Epelfeld A. V., Belkin P. N., Borisov A. M., et al. Modern technologies for modifying the surface of materials and applying protective coatings: in 3 volumes. Vol. I. Microarc oxidation. — Moscow – St. Petersburg: Renome, 2017. — 648 p. [in Russian].

3. Khokhlov A. L., Maryin D. M., Khokhlov A. A. Influence of the parameters of the technological mode of microarc oxidation on the formation of the thickness and porosity of the oxide coating / Tekhn. Oborud. Sela. 2021. N 11(293). P. 40 – 43 [in Russian]. DOI: 10.33267/2072-9642-2021-11-40-43

4. Kuznetsov Yu. A., Markov M. A., Kravchenko I. N., et al. Technological aspects of the synthesis of ceramic coatings by the flow method of microarc oxidation / Novye ogneupory. 2021. N 7. P. 45 – 49 [in Russian]. DOI: 10.17073/1683-4518-2021-7-45-49

5. Dudareva N. Yu., Sitdikov V. M., Kolomeichenko A. V., Logachev V. N. Influence of the modes of the microarc oxidation process on the structure of the formed coatings / Mir Transp. Tekhnol. Mashin. 2023. N 3 – 5(82). P. 3 – 8 [in Russian]. DOI: 10.33979/2073-7432-2023-3-5(82)-3-8

6. Medvedev D. L., Sedova N. A. Study of microarc oxidation as a method for improving the technical characteristics of AA5086 aluminum and VT6 titanium alloys / Bezopasn. Truda Prom. 2023. N 9. P. 12 – 17 [in Russian]. DOI: 10.24000/0409-2961-2023-9-12-17

7. Komarov A. I., Goransky G. G. Hardening of steel products by microarc oxidation using an aluminum sublayer obtained by cold gas-dynamic spraying / Mekh. Mashin Mekhanizmov Mater. 2018. N 3(44). P. 75 – 82 [in Russian]. eLIBRARY ID: 35620366

8. Chernyshov N. S., Kuznetsov Yu. A., Markov M. A., et al. Corrosion resistance tests of oxide-ceramic coatings formed by microarc oxidation / Novye ogneupory. 2020. N 4. P. 51 – 55 [in Russian]. DOI: 10.17073/1683-4518-2020-4-51-55

9. Abramova M. G., Goncharov A. A., Nikitin Ya. Yu. Study of corrosion resistance of AMg6 alloy and 12Kh18N10T steel under loading conditions and the influence of environmental factors / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 6. P. 33 – 40 [in Russian]. DOI: 10.26896/1028-6861-2021-87-6-33-40

10. Kuznetsov Yu. A. Study of wear resistance of coatings obtained by microarc oxidation/ Nov. Mater. Tekhnol. Mashinostr. 2010. N 11. P. 70 – 73 [in Russian]. eLIBRARY ID: 22829724

11. Redkin V. E., Tkachenko Yu. S., Sukhodaev P. O., Lyamkin A. I. Device for testing materials for friction and wear / Industr. Lab. Mater. Diagn. 2020. Vol. 86. N 8. P. 66 – 71 [in Russian]. DOI: 10.26896/1028-6861-2020-86-8-66-71

12. Prozhega M. V., Smirnov N. N., Somov O. V., et al. Study of the influence of the substrate material on the wear resistance of MAO coatings / Trenie Smazka Mash. Mekhan. 2015. N 2. P. 44 – 48 [in Russian].

13. Slobodov A. A., Markov M. A., Krasikov A. V., et al. Aspects of thermodynamic modeling of microarc oxidation of aluminum and its alloys in aqueous borate electrolytes / Probl. Mashinostr. Avtom. 2021. N 2. P. 58 – 71 [in Russian]. DOI: 10.52261/02346206-2021-2-58

14. Kolomeichenko A. V., Kravchenko I. N., Puzryakov A. F., et al. Technology of restoration with hardening of machine parts based on the use of microarc oxidation / Stroit. Dor. Mash. 2014. N 10. P. 16 – 21 [in Russian]. eLIBRARY ID: 22000527

15. Kolomeichenko A. V., Logachev V. N., Titov N. V., Kravchenko I. N. Microarc oxidation as a way to increase the resource of machine parts during their production or restoration / Tekhn. Oborud. Sela. 2014. N 4. P. 30 – 35 [in Russian]. eLIBRARY ID: 21432771

16. Kolomeichenko A. V., Logachev V. N., Titov N. V. Increasing the service life of machine parts using microarc oxidation / Tekhnol. Mashinostr. 2014. N 9. P. 34 – 38 [in Russian]. eLIBRARY ID: 22150388

17. Chavdarov A. V., Denisov V. A. Prospects for using MAO technology for internal combustion engines / Agroinzheneriya. 2020. N 5 (99). P. 38 – 42 [in Russian]. DOI: 10.26897/2687-1149-2020-5-38-42

18. Zorenko D. A. Influence of fine particles of solid lubricant on the wear resistance of friction units with coatings obtained by microarc oxidation / Mekh. Fiz. Prots. Poverkhn. Kont. Tv. Tel Det. Tekhnol. Énerget. Oborud. 2021. N 14. P. 52 – 56 [in Russian]. eLIBRARY ID: 46513097

19. Lesnevsky L. N., Lyakhovetsky M. A., Savushkina S. V. Fretting wear of composite ceramic coating obtained by microarc oxidation on aluminum alloy D16 / Friction and wear. Vol. 37. N 3. P. 345 – 351 [in Russian]. eLIBRARY ID: 26250522

20. Poches N. S., Malyshev V. N., Dörr N. Tribotechnical studies of wear-resistant MAO coatings in environmentally friendly lubricants / Innov. Sel’. Khoz. 2018. N 3(28). P. 467 – 473 [in Russian]. eLIBRARY ID: 36314215


Review

For citations:


Somov O.V., Vasin V.A. Research of tribological properties of surface MAO composites on D16T alloy. Industrial laboratory. Diagnostics of materials. 2025;91(1):69-78. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-1-69-78

Views: 151


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)