Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Technological monitoring of diffusible hydrogen in steels

https://doi.org/10.26896/1028-6861-2025-91-2-35-42

Abstract

Diffusible hydrogen (DH) in metals is a part of dissolved hydrogen with high diffusion mobility. It is the main cause of cold cracking of welds and deposited metal. The paper presents the results of technological testing of DH in steels. It has been found that due to low maximum permissible concentrations in high-strength steels, the measurement methods verified for weld metal may give multiple measurement errors. A DH measurement technique is proposed based on the vacuum heating method with mass spectrometric measurement of hydrogen flow from the sample during its analysis. It is proposed to separate the flows of DH and more strongly bound hydrogen during vacuum extraction from the sample using the extraction curve. It is shown that good convergence of results is observed when using this technique, and the measurement time can be significantly reduced compared to the recommendations of standards for weld metal. Based on the comparison of experimental data and standard requirements, it was found that the DH activation energy is no more than 0.3 eV. The extraction time of DH at a fixed analysis temperature depends significantly on the size of the steel sample from which hydrogen is extracted. This does not allow using only the extraction time and temperature when separating DH from bound hydrogen, as recommended by many existing methods for measuring the mass fraction of DH. The obtained results can be used in technological testing of DH in steels.

About the Authors

Yu. A. Yakovlev
Institute for Problems in Mechanical Engineering, RAS
Russian Federation

Yury A. Yakovlev

61, Bol’shoy prosp. V. O., St. Petersburg, 199178



A. M. Polyanskiy
RDC EBT
Russian Federation

Anatoly M. Polyanskiy

28, ul. Politekhnicheskaya, St. Petersburg, 194021



V. A. Polyanskiy
Institute for Problems in Mechanical Engineering, RAS
Russian Federation

Vladimir A. Polyanskiy

61, Bol’shoy prosp. V. O., St. Petersburg, 199178



References

1. Dobatkin V. I., Gabidullin R. M., Kolachev B. A. Gases and oxides in aluminum wrought alloys. — Moscow: Metallurgiya, 1976. — 264 p. [in Russian].

2. Ilyin A. A., Kolachev B. A., Polkin I. S. Titanium alloys. Composition, structure, properties. — Moscow: VILS-MATI, 2009. — 520 p. [in Russian].

3. Bockris J. O. M., Subramanyan P. K. Hydrogen embrittlement and hydrogen traps / Journal of the Electrochemical Society. 1971. Vol. 118. N 7. P. 1114. DOI: 10.1149/1.2408257

4. McNabb A., Foster P. A new analysis of diffusion of hydrogen in iron and ferritic steels / Transactions of the Metallurgical Society of AIME. 1963. Vol. 227. N 3. P. 618.

5. Koyama M., Akiyama E., Lee Y., et al. Overview of hydrogen embrittlement in high-Mn steels / International Journal of Hydrogen Energy. 2017. Vol. 42. N 17. P. 12706 – 12723. DOI: 10.1016/j.ijhydene.2017.02.214

6. Depover T., Escobar D., Wallaert E., et al. Effect of hydrogen charging on the mechanical properties of advanced high strength steels / International Journal of Hydrogen Energy. 2014. Vol. 39. N 9. P. 4647 – 4656. DOI: 10.1016/j.ijhydene.2013.12.190

7. Shashkova L. V., Manakov N. A., Kozik E. S., et al. The effect of diffusion-mobile and combined hydrogen on hydrogen brittleness of steel / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 8. P. 59 – 66 [in Russian]. DOI: 10.26896/1028-6861-2019-85-8-59-66

8. Hopkin G. L. A suggest cause and general theory for the cracking of alloy steels on welding / Welding Journal. 1944. N 11. P. 605 – 606.

9. Pokhodnya I. K. Physical nature of hydrogen-induced cold cracks in welded joints of structural steels / Automatic Welding. 1997. Vol. 530. N 5. P. 3 – 12 [in Russian].

10. Makarov E. L. Cold cracks when welding alloy steels. — Moscow: Mashinostroenie, 1981. — 247 p. [in Russian].

11. Kasatkin B. S. Hydrogen embrittlement and the formation of cold cracks during welding of steel 25Kh2NMFA / Automatic Welding. 1993. N 8. P. 3 – 10 [in Russian].

12. Nakai M., Nagai K., Murata Y., et al. Correlation high temperature steam oxidation with hydrogen dissolution in pure iron ternary high-chromium ferritic steel / ISIJ International. 2005. Vol. 45. N 7. P. 1066 – 1072. DOI: 10.2355/isijinternational.45.1066

13. Nagumo M. Function of Hydrogen in Embrittlement of High-strength Steels / ISIJ International.2001. Vol. 41. N 6. P. 590 – 598. DOI: 10.2355/isijinternational.41.590

14. Semenov Ya. S., Parionov V. P. Identification of mechanisms of delayed destruction of low-alloy high-strength steels / Industr. Lab. Mater. Diagn. 2001. Vol. 67. N 10. P. 43 – 47 [in Russian].

15. Merson D. L., Polyansky A. M., Polyansky V. A., et al. Relationship between the mechanical characteristics of 35G2 steel and the hydrogen content and acoustic emission parameters / Industr. Lab. Mater. Diagn. 2008. Vol. 74. N 2. P. 57 – 60 [in Russian].

16. Rakovskaya E. G., Zanko N. G., Yagunova L. K. Study of the influence of static stresses on the hydrogen content and electrochemical characteristics of steels of various types / Industr. Lab. Mater. Diagn. 2024. Vol. 90. N 3. P. 45 – 51 [in Russian]. DOI: 10.26896/1028-6861-2024-90-3-45-51

17. Tal-Gutelmacher E., Eliezer D., Abramov E. Thermal desorption spectroscopy (TDS) — application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials / Materials Science and Engineering. 2007. Vol. 445. P. 625 – 631. DOI: 10.1016/j.msea.2006.09.089

18. Hirth J. P. Effects of hydrogen on the properties of iron and steel / Metallurgical Transactions. 1980. Vol. 11. P. 861 – 890. DOI: 10.1007/BF02654700

19. Saini N., Pandey C., Mahapatra M. Effect of diffusible hydrogen content on embrittlement of P92 steel / International Journal of Hydrogen Energy. 2017. Vol. 42. N 27. P. 17328 – 17338. DOI: 10.1016/j.ijhydene.2017.05.214

20. Peral L., Zafra A., Fernández-Pariente I., et al. Effect of internal hydrogen on the tensile properties of different CrMo (V) steel grades: Influence of vanadium addition on hydrogen trapping and diffusion / International Journal of Hydrogen Energy. 2020. Vol. 45. N 41. P. 22054 – 22079. DOI: 10.1016/j.ijhydene.2020.05.228

21. Rodoni E., Zafra A., Fernández-Pariente I., et al. Effect of microstructure on the hydrogen embrittlement, diffusion, and uptake of dual-phase low alloy steels with varying ferrite-martensite ratios / International Journal of Hydrogen Energy. 2024. Vol. 50. Part A. P. 53 – 65. DOI: 10.1016/j.ijhydene.2023.07.061

22. Depover T., Wallaert E., Verbeken K. On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe — C alloys / Materials Science and Engineering. 2016. Vol. 664. P. 195 – 205. DOI: 10.1016/j.msea.2016.03.107

23. Luppo M., Ovejero-Garcia J. The influence of microstructure on the trapping and diffusion of hydrogen in a low carbon steel / Corrosion Science. 1991. Vol. 32. N 10. P. 1125 – 1136. DOI: 10.1016/0010-938X(91)90097-9

24. So K. H., Kim J. S., Chun Y. S., et al. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe – 18 Mn – 1.5 Al – 0.6 C TWIP steel / ISIJ international. 2009. Vol. 49. N 12. P. 1952 – 1959. DOI: 10.2355/isijinternational.49.1952

25. Fassina P., Bolzoni F., Fumagalli G., et al. Influence of hydrogen and low temperature on mechanical behaviour of two pipeline steels / Engineering Fracture Mechanics. 2012. Vol. 81. P. 43 – 55. DOI: 10.1016/j.engfracmech.2011.09.016

26. Akiyama E., Wang M., Li S., et al. Studies of evaluation of hydrogen embrittlement property of high-strength steels with consideration of the effect of atmospheric corrosion / Metallurgical and Materials Transactions. 2013. Vol. 44. P. 1290 – 1300. DOI: 10.1007/s11661-012-1403-2

27. Okayasu M., Motojima J. Microstructure-dependent hydrogen diffusion and trapping in high-tensile steel / Materials Science and Engineering. 2020. Vol. 790. P. 139418. DOI: 10.1016/j.msea.2020.139418

28. Wang M., Akiyama E., Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test / Corrosion Science. 2007. Vol. 49. N 11. P. 4081 – 4097. DOI: 10.1016/j.corsci.2007.03.038

29. Physical quantities. Reference book. — Moscow: Énergoatomizdat, 1991. — 960 p. [in Russian].

30. Panchenko O. V. On the question of methods for determining diffusion hydrogen / Mashinostroenie. 2011. N 9. P. 57 – 61 [in Russian].

31. Kissinger H. E. Reaction kinetics in differential thermal analysis / Analytical Chemistry. 1957. Vol. 29. N 11. P. 1702 – 1706. DOI: 10.1021/ac60131a045

32. Polyanskiy A. M., Polyanskiy V. A., Yakovlev Y. A. Experimental determination of parameters of multichannel hydrogen diffusion in solid probe / International Journal of Hydrogen Energy. 2014. Vol. 39. N 30. P. 17381 – 17390. DOI: 10.1016/j.ijhydene.2014.07.080

33. Belyaev A. K., Polyanskiy A. M., Polyanskiy V. A., et al. Multichannel diffusion vs TDS model on example of energy spectra of bound hydrogen in 34CrNiMo6 steel after a typical heat treatment / International journal of hydrogen energy. 2016. Vol. 41. N 20. P. 8627 – 8634. DOI: 10.1016/j.ijhydene.2016.03.198

34. Modern metrology of physical and chemical measurements. — Moscow: Triumf, 2022. — 560 p. [in Russian].

35. Belyaev A. K., Chevrychkina A. A., Polyanskiy V. A., et al. Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra / Continuum Mechanics and Thermodynamics. 2023. Vol. 35. N 4. P. 1309 – 1323. DOI: 10.1007/s00161-022-01130-7


Review

For citations:


Yakovlev Yu.A., Polyanskiy A.M., Polyanskiy V.A. Technological monitoring of diffusible hydrogen in steels. Industrial laboratory. Diagnostics of materials. 2025;91(2):35-42. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-2-35-42

Views: 176


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)