Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Error analysis in bending tests of short specimens and the new accurate formulas for elastic and shear moduli

https://doi.org/10.26896/1028-6861-2025-91-2-54-67

Abstract

The techniques to measure elastic modulus and shear modulus of a material in bending tests are studied and improved. Assuming specimen has a symmetry plane and a material is homogeneous and isotropic (ice, ceramics, alloys, and dispersion-filled composites with metallic, ceramic or polymer matrices and so on) we examine the manifold of features and peculiarities of bending tests, the factors influencing force – deflection curve and moduli values extracted from its linear part, we examine error sources and capabilities to minimize them and to extend the feasibility range of bending tests. We analyze the theoretic force-deflection curve obtained in three-point bending test in the symmetry plane of a specimen and its dependence on the ratio l of a specimen to the height of its cross-section (of arbitrary shape) taking into account the influence of shear stress and strain on a beam deflection (it is significant for beams with l < 10). The analytical estimate of the systematic error of the standard method for elastic modulus evaluation, which does not account for shear deformations, is obtained as a function of a beam span l and its cross-section shape and size. It is shown that the error depends on the Poisson ratio rather than on shear modulus. For materials with a positive Poisson’s ratio, the error is 11 – 15 % for beams with l = 5 and about 5 % for beams with l = 10. For materials with a negative Poisson’s ratio, the error is significantly lower. The new accurate explicit formulas are derived for simple calculation of elastic modulus, shear modulus, and Poisson’s ratio of the material based on two tests with different span l, eliminating the systematic error of the standard method. The formula for elastic modulus is independent of specific shape and size of a specimen’s cross-section and require only seven arithmetic operations. The applicability and high accuracy of the new formula for the effective longitudinal elastic modulus of fibrous and layered composites are demonstrated using bending test data of three structurally different composites with varying degrees of anisotropy (unidirectional carbon fiber-reinforced plastic, woven carbon fiber-reinforced plastic, and woven glass fiber-reinforced plastic with a fiber volume fraction of 61 – 63 %). The error didn’t exceed 2 – 4 % in any case.

About the Author

A. V. Khokhlov
Institute of Mechanics, Lomonosov Moscow State University
Russian Federation

Andrew V. Khokhlov

1, Michurinskii prosp., Moscow, 119192



References

1. Rabotnov Yu. N. Mechanics of a Deformable Solid Body. 2nd edition. — Moscow: Nauka, 1988. — 712 p. [in Russian].

2. Tarnopolsky Yu. M., Kintsis T. Ya. Methods for Static Testing of Reinforced Plastics. 3rd edition. — Moscow: Khimiya, 1981. — 271 p. [in Russian].

3. Tarnopol’skii Y. M., Zhigun I. G., Polyakov V. A. Spatially Reinforced Composites. — Lancaster: Technomic Publ. Co. Inc., 1992. — 341 p.

4. Evans A. G., Zok F. W. Review. The physics and mechanics of fibre-reinforced brittle matrix composites / J. Mater. Sci. 1994. Vol. 29. P. 3857 – 3896.

5. Kelly A., Zweben C. H. Comprehensive composite materials. — New York: Elsevier, 2000. — 810 p.

6. Mileiko S. T. Metal and Ceramic Based Composite. — Amsterdam: Elsevier, 1997. — 690 p.

7. Handbook of Ceramic Composites / Ed. by N. P. Bansal. — New York: Springer, 2005. — 554 p.

8. Mechanical testing of advanced fiber composites / Ed. by J. M. Hodgkinson. — Woodhead Publishing, 2010. — 378 p.

9. Berlin A. A., Bazhenov S. L., Kul’kov A. A., Oshmyan V. G. Polymer matrix composite materials. Strength and Tecnology. — Dolgoprudnii: Intellect, 2009. — 352 p. [in Russian].

10. Polilov A. N., Tatus N. A. Biomechanics of Fiber Composites Strength. — Moscow: Fizmatlit, 2018. — 328 p. [in Russian].

11. Ruys A. J. Silicon Carbide Ceramics. Structure, Properties and Manufacturing. — Amsterdam: Elsevier, 2023. — 588 p.

12. Kovar D., Thouless M. D., Halloran J. W. Crack deflection and propagation in layered silicon nitride/boron nitride ceramics / J. Am. Ceram. Soc. 1998. Vol. 81. N 4. P. 1004 – 1112.

13. Xiang L., Cheng L., Hou Y., et al. Fabrication and mechanical properties of laminated HfC-SiC/BN ceramics / J. Eur. Ceram. Soc. 2014. Vol. 34. P. 3635 – 3640. DOI: 10.1016/j.jeurceramsoc.2014.04.021

14. Travitzky B. N., Bonet A., Dermeik B., et al. Additive manufacturing of ceramic-based materials / Adv. Eng. Mater. 2014. Vol. 16. N 6. P. 729 – 754. DOI: 10.1002/adem.201400097

15. He R., Zhou N., Zhang K., et al. Progress and challenges towards additive manufacturing of SiC ceramic / J. Adv. Ceramics. 2021. Vol. 10. P. 637 – 674. DOI: 10.1007/s40145-021-0484-z

16. Wang G., Miao Y., Gong H., et al. Direct ink writing of reaction bonded silicon carbide ceramics with high thermal conductivity / Ceramics International. 2023. Vol. 49. N 6. P. 10014 – 10022. DOI: 10.1016/j.ceramint.2022.11.179

17. Goldberg M., Obolkina T., Smirnov S., et al. The Influence of Co Additive on the Sintering, Mechanical Properties, Cytocompatibility, and Digital Light Processing Based Stereolithography of 3Y-TZP-5Al2O3 Ceramics / Materials. 2020. N 13. 2789. DOI: 10.3390/ma13122789

18. Stepanov N. D., Shaysultanov D. G., Chernichenko R. S., et al. Mechanical properties of a new high entropy alloy with a duplex ultra-fine grained structure / Mater. Scie. Eng. A. 2018. Vol. 728. N 13. P. 54 – 62. DOI: 10.1016/j.msea.2018.04.118

19. Nikonovich M., Kolchin F., Galyshev S., Mileiko S. Matrixless fibrous oxide composites / Ceramics International. 2021. Vol. 47. P. 8711 – 8716. DOI: 10.1016/j.ceramint.2020.11.116

20. Zhong K., Zhou J., Zhao C., et al. Effect of interfacial transition layer with CNTs on fracture toughness and failure mode of carbon fiber reinforced aluminum matrix composites / Composites: Part A. 2022. Vol. 163. P. 107201. DOI: 10.1016/j.compositesa.2022.107201

21. Mileiko S. Carbon-fibre/metal-matrix composites: A review / J. Compos. Sci. 2022. Vol. 6. P. 297. DOI: 10.3390/jcs6100297

22. Galyshev S. On the Strength of the CF/Al-Wire Depending on the Fabrication Process Parameters: Melt Temperature, Time, Ultrasonic Power, and Thickness of Carbon Fiber Coating / Metals. 2021. Vol. 11. 1006. P. DOI: 10.3390/met11071006

23. Galyshev S., Atanov B. The Dependence of the Strength of a Carbon Fiber/Aluminum Matrix Composite on the Interface Shear Strength between the Matrix and Fiber / Metals. 2022. Vol. 12. P. 1753. DOI: 10.3390/met12101753

24. Kaledin A., Shikunov S., Zubareva J., et al. Fabrication of Layered SiC/C/Si/MeSi2/Me Ceramic — Metal Composites via Liquid Silicon Infiltration of Metal — Carbon Matrices / Materials. 2024. Vol. 17. P. 650. DOI: 10.3390/ma17030650

25. Trykov Yu. P., Gurevich L. M., Shmorgun V. G. Layered composites based on aluminum and its alloys. — Moscow: Metallurgizdat, 2004. — 230 p. [in Russian].

26. Ivanov D. A., Shlyapin S. D., Valiano G. E. Mechanism of destruction of the Al-Al4C3-Al2O3 alumo-matrix dispersion-hardened composite material with a layered structure on static and shock loading / Izv. Vuzov. Poroshk. Metallurg. Funkts. Pokryt. (Powder Metallurgy and Functional Coatings). 2020. N 4. P. 66 – 75 [in Russian].

27. Khokhlov A. V., Galyshev S. N, Atanov B. I., Orlov V. I. Delaminations of materials with low shear strength in three-point bending tests and their impact on fracture process and test data / Physical Mesomechanics. 2025. Vol. 28. N 4.

28. Wisnom M. R. The effect of specimen size on the bending strength of unidirectional carbon fibre-epoxy / Compos. Struct. 1991. Vol. 18. N 1. P. 47 – 63.

29. Sideridis E., Papadopoulos G. A. Short-beam and three-point-bending tests for the study of shear and flexural properties in unidirectional-fiber-reinforced epoxy composites / J. Appl. Polym. Sci. 2004. Vol. 93. N 1. P. 63 – 74.

30. Rácz Zs., Vas L. M. Relationship between the flexural properties and specimen aspect ratio in unidirectional composites / Compos. Interfaces. 2005. Vol. 12. N 3 – 4. P. 325 – 339.

31. Mujika F. On the effect of shear and local deformation in three-point bending tests / Polymer Testing. 2007. Vol. 27. N 7. P. 869 – 877. DOI: 10.1016/j.polymertesting.2007.06.002

32. Caprino G., Iaccarino P., Lamboglia A. The effect of shear on the rigidity in three-point bending of unidirectional CFRP laminates made of T800H/3900-2 / Compos. Struct. 2009. Vol. 88. N 3. P. 360 – 366.

33. Abouelleil H., Pradelle N., Villat C., et al. Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites / Restorative dentistry & Endodontics. 2015. Vol. 40. N 4. P. 262 – 269. DOI: 10.5395/rde.2015.40.4.262

34. Garoushi S., Lassila L. V. J., Vallittu P. K. The effect of span length of flexural testing on properties of short fiber reinforced composite / J. Mater. Sci.: Mater. in Medicine. 2012. Vol. 23. P. 325 – 328. DOI: 10.1007/s10856-011-4480-7

35. Hara E., Yokozeki T., Hatta H., et al. Comparison of out-of-plane tensile strengths of aligned CFRP obtained by 3-point bending and direct loading tests / Composites: Part A. 2012. Vol. 43. N 11. P. 1828 – 1836. DOI: 10.1016/j.compositesa.2014.08.003

36. Hara E., Yokozeki T., Hatta H., et al. Comparison of out-of-plane tensile moduli of CFRP laminates obtained by 3-point bending and direct loading tests / Composites: Part A. 2014. Vol. 67. P. 77 – 85.

37. Insausti N., Adarraga I., De Gracia J., et al. Numerical assessment of an experimental procedure applied to DCB tests / Polymer Testing. 2020. Vol. 82. P. 106288. DOI: 10.1016/j.polymertesting.2019.106288

38. Guseinov K., Sapozhnikov S. B., Kudryavtsev O. A. Features of three-point bending tests for determining out-of-plane shear modulus of layered composites / Mech. Compos. Mater. 2022. Vol. 58. N 2. P. 223 – 240. DOI: 10.1007/s11029-022-10020-7

39. Demiral M., Kadioglu F., Silberschmidt V. V. Size effect in flexural behaviour of unidirectional GFRP composites / J. Mech. Sci. Technol. 2020. Vol. 34. N 12. P. 5053 – 5061. DOI: 10.1007/s12206-020-1109-0

40. Zhigun V. I., Plume E. Z., Mujzhnieks K. I., Krasnov L. L. Universal Methods for Determining the Shear Modules of Composite Materials / Mekh. Kompoz. Mater. Konstr. 2020. Vol. 26. N 3. P. 313 – 326 [in Russian]. DOI: 10.33113/mkmk.ras.2020.26.03.313_326.02

41. Polilov A. N., Vlasov D. D., Tatus N. A. Specified method for estimating the interlayer shear modulus by correcting the deflection of polymer composite specimens / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 3. P. 57 – 69 [in Russian]. DOI: 10.26896/1028-6861-2023-89-3-57-69

42. Polilov A. N., Vlasov D. D., Tatus N. A. Specified criterion for delamination upon bending of a composite beam / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 10. P. 63 – 73 [in Russian]. DOI: 10.26896/1028-6861-2023-89-10-63-73

43. Polilov A. N., Khokhlov V. K. Applied strength criterion for bending composite beams / Mashinovedenie. 1979. N 2. P. 53 – 57.

44. Khokhlov A. V. The Main Features of Viscoelastoplastic Materials Behavior, Models, and the System of Quasi-static Tests for Polymers and Composites Aimed at All-round Study of Their Properties and Selection and Identification of Constitutive Relation / Polymer Science. Ser. C. 2024. Vol. 66. N 2.

45. Khokhlov A. V. Two-Sided Estimates for the Relaxation Function of the Linear Theory of Heredity via the Relaxation Curves during the Ramp-Deformation and the Methodology of Identification / Mechanics of Solids. 2018. Vol. 53. N 3. P. 307 – 328. DOI: 10.3103/S0025654418070105

46. Khokhlov A. V. Applicability indicators and identification techniques for a nonlinear Maxwell-type elastoviscoplastic model using loading-unloading curves / Mech. Compos. Mater. 2019. Vol. 55. N 2. P. 195 – 210. DOI: 10.1007/s11029-019-09809-w

47. Khokhlov A. V., Shaporev A. V., Stolyarov O. N. Loading-unloading-recovery curves for polyester yarns and identification of the nonlinear Maxwell-type viscoelastoplastic model / Mech. Compos. Mater. 2023. Vol. 59. N 1. P. 129 – 146. DOI: 10.1007/s11029-023-10086-x

48. Khokhlov A. V. Applicability Indicators and Identification Techniques for a Nonlinear Maxwell-Type Elasto-Viscoplastic Model using Multi-Step Creep Curves / Herald of the Bauman Moscow State Tech. Univ., Nat. Sci. 2018. N 6. P. 92 – 112 [in Russian]. DOI: 10.18698/1812-3368-2018-6-92-112

49. Khokhlov A. V. Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials / Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki. 2019. Vol. 23. N 2. P. 304 – 340. DOI: 10.14498/vsgtu1654

50. Khokhlov A. V., Gulin V. V. Families of stress-strain, relaxation, and creep curves generated by a nonlinear model for thixotropic viscoelastic-plastic media accounting for structure evolution. Part 2. Relaxation and stress-strain curves / Mech. Compos. Mater. 2024. Vol. 60. N 2. P. 259 – 278. DOI: 10.1007/s11029-024-10197-z

51. Khokhlov A. V. Hybridization of a Linear Viscoelastic Constitutive Equation and a Nonlinear Maxwell-Type Viscoelastoplastic Model, and Analysis of Poisson’s Ratio Evolution Scenarios under Creep / Physical Mesomechanics. 2024. Vol. 27. N 3. P. 229 – 255. DOI: 10.1134/S1029959924030020

52. Timoshenko S. P., Gere J. M. Mechanics of materials. — New York: Van Nostrand Reinhold Co., 1972. — 552 p.


Review

For citations:


Khokhlov A.V. Error analysis in bending tests of short specimens and the new accurate formulas for elastic and shear moduli. Industrial laboratory. Diagnostics of materials. 2025;91(2):54-67. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-2-54-67

Views: 187


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)