

Accuracy estimation for simplified techniques of composite structures ply-by-ply calculation method
https://doi.org/10.26896/1028-6861-2025-91-2-68-75
Abstract
In order to apply the standard ply-by-ply method for calculation of composite structures, a complete set of elastic characteristics of the material must be determined, which involves a lot of methodological difficulties. In the present work some methods of elastic constants approximate estimations for composite monolayers and symmetric pairs of layers, used, in particular, for creation of pressure vessels, are considered. The error of restoring the material elastic constants on the basis of the known larger Young’s modulus is determined. It was found that this error, in addition to the degree of composite anisotropy, is significantly influenced by the variation of experimental data in the used sample of composites of this class (carbon fiber-reinforced plastics (CFRP), glass fiber-reinforced plastics (GFRP) or organic fiber-reinforced plastics (OFRP)), which should be taken into account in the calculations. These conclusions are illustrated on verification stress computations in the ply pairs of a composite wound pressure vessel. A comparison of the results of ply-by-ply calculations using the full set of elastic constants and using an approximate estimation of the elastic constants via elastic modulus transformation invariants is presented. It is shown that for strongly anisotropic composite materials such as carbon fiber-reinforced plastics, in which the modulus along the fibers significantly exceeds the other elastic constants, approximate methods make it possible to carry out calculations of composite structures with acceptable accuracy without resorting to complicated computational procedures.
About the Authors
D. D. VlasovRussian Federation
Danila D. Vlasov
4, Malyi Kharitonyevsky per., Moscow, 101000
A. N. Polilov
Russian Federation
Alexander N. Polilov
4, Malyi Kharitonyevsky per., Moscow, 101000
References
1. Rabotnov Yu. N. Mechanics of deformable solid. Textbook for students of mechanical, mathematical and physical specialties of universities. — Moscow: Nauka, 1988. — 712 p. [in Russian].
2. Tsai S. W., Melo J. D. D., Sihn S., et al. Composite Laminates. Theory and practice of analysis, design and automated layup. — Stanford University Composites Design Group, 2017. — 373 p.
3. Tsai S. W. Double-Double: New Family of Composite Laminates / AIAA Journal. 2021. Vol. 59. N 11. DOI: 10.2514/1.J060659
4. Arteiro A., Pereira L. F., Bessa M. A., et al. A micromechanics perspective to the invariant-based approach to stiffness / Compos. Sci. Technol. 2019. DOI: 10.1016/j.compscitech.2019.04.002
5. Tsai S. W., Sihn S., Melo J. D. D. Trace-based stiffness for a universal design of carbon fiber reinforced composite structures / Compos. Sci. Technol. 2015. DOI: 10.1016/j.compscitech.2015.08.003
6. Vermes B., Tsai S. W., Riccio A., et al. Application of the Tsai’s modulus and double-double concepts to the definition of a new affordable design approach for composite laminates / Composite Structures. 2020. DOI: 10.1016/j.compstruct.2020.113246
7. Vasiliev V. V., Moroz N. G. Composite pressure vessels — design, calculation, fabrication and testing. — Moscow: Mashinostroenie, 2015. — 372 p. [in Russian].
8. Polilov A. N., Sklemina O. Yu., Tatus’ N. A. Ply-by-ply calculation method and strength criteria for composite pressure vessels wound with symmetrical pairs of layers. Part 1. Features of layer-by-layer method of calculation of composite structure made of symmetrical pairs of layers / Mechanical engineering and engineering education. 2020. N 3(64). P. 21 – 30 [in Russian].
9. Polilov A. N., Vlasov D. D., Sklemina O. Yu., Tatus’ N. A. Strength criteria of obliquely wound composite tubes under biaxial tension / Strength of Materials. 2021. Vol. 53. N 5. P. 765 – 774. DOI: 10.1007/s11223-021-00342-7
10. Skleznev A., Azarov A., Babichev A. A., et al. To the Problem of Pressure-Tightness of Composite Pressure Vessels / Composites and Nanostructures. 2023. Vol. 15. P. 1 – 12. DOI: 10.36236/1999-7590-2023-15-1-1-12
11. Chao L., Yaoyao S. Design optimization for filament wound cylindrical composite internal pressure vessels considering process-induced residual stresses / Composite Structures. 2020. Vol. 235. DOI: 10.1016/j.compstruct.2019.111755
12. Saha P., Hossain M. F., Rana M. S., Ferdous M. S. Numerical Modeling of Kevlar/Jute Fiber and Hybrid Composite Pressure Vessels / Carbon Trends. 2023. Vol. 13. DOI: 10.1016/j.cartre.2023.100304
13. Błachut A., Kaleta J., Detyna J., et al. Multiscale analysis of composite pressure vessel structures wound with different fiber tensile force / Composite Structures. 2024. Vol. 337. DOI: 10.1016/j.compstruct.2024.118065
14. Vermes B., Tsai S. W., Riccio A., et al. Application of the Tsai’s modulus and double-double concepts to the definition of a new affordable design approach for composite laminates / Composite Structures. 2021. DOI: 10.1016/j.compstruct.2020.113246
15. Barbero E. J. Universal carpet plots for stiffness and strength of carbon/epoxy laminates / The Composites and Advanced Materials Expo Conference Proceedings. 2017. P. 1 – 11.
16. Garofano A., Sellitto A., Acanfora V., et al. On the effectiveness of double-double design on crashworthiness of fuselage barrel / Aerospace Science and Technology. 2023. Vol. 140. DOI: 10.1016/j.ast.2023.108479
17. Vlasov D. D., Sklemina O. Yu., Polyakov A. E. On simplified methods of determination of elastic constants of layered polymer composites / Plastic masses. 2023. N 11 – 12. P. 17 – 20 [in Russian].
18. Olegin I. P., Burnysheva T. V., Laperdina N. A. Determination of the Effective Stiffness of a Unidirectional Layer by the Finite Element Method and Approximate Formulas / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 3. P. 40 – 50 [in Russian]. DOI: 10.26896/1028-6861-2021-87-3-40-50
19. Dudarkov Yu. I., Limonin M. V. Determination of the transverse shear stress in layered composites / Industr. Lab. Mater. Diagn. 2020. Vol. 86. N 2. P. 44 – 53 [in Russian]. DOI: 10.26896/1028-6861-2020-86-2-44-53
Review
For citations:
Vlasov D.D., Polilov A.N. Accuracy estimation for simplified techniques of composite structures ply-by-ply calculation method. Industrial laboratory. Diagnostics of materials. 2025;91(2):68-75. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-2-68-75