

Rapid estimation of the fatigue limit of polymer composite materials using infrared thermography
https://doi.org/10.26896/1028-6861-2025-91-2-76-84
Abstract
To ensure the reliability of structural elements made of polymer composite materials operating under vibration conditions, it is necessary to have data on their resistance to destruction for a reason of high-cycle fatigue. The traditional approach to determining the fatigue strength characteristics of materials involves long-term expensive tests. The infrared thermography method for express estimation of the fatigue limit was actively developed in recent years. The method is based on the use of self-heating of the material under cyclic loads exceeding the fatigue limit. The purpose of this work is to develop, within the framework of the infrared thermography method, a technique for experimental rapid assessment of the fatigue limit of polymer composite materials using the example of laminated carbon fiber, substantiation of the choice of controlled parameters of the thermal state of samples and processing of the results. The technique was developed using the example of laminated carbon fiber. Standard samples were subjected to block cyclic loading in the «tension-tension» cycle on the resonance testing machine. The surface temperature of the samples was recorded during loading using a precision infrared camera. Four variants of processing the test results were compared. The first two options are based on the use of the maximum and averaged stabilization temperature over the sample surface in the loading blocks. The third and fourth options are based on the use of increase of the maximum and averaged temperature at the beginning of the loading block. The estimates of the fatigue limit obtained by named four variants of the thermogram processing method are in agree with each other and with the results of standard fatigue tests. The use of the infrared thermography method makes it possible to significantly reduce the number of tested samples, the labor intensity and duration of work compared with standard fatigue tests. This allows us to recommend the described methodology for obtaining an express estimation of the fatigue limit at the stage of development of products made of composite materials when choosing design and technological solutions.
About the Authors
D. G. SolomonovRussian Federation
Danil G. Solomonov
29, Komsomolsky prosp., Perm, 614000
M. Sh. Nikhamkin
Russian Federation
Mikhail Sh. Nikhamkin
29, Komsomolsky prosp., Perm, 614000
References
1. Kelly A. Very Stiff Fibres Woven into Engineering’s Future: a Long Term Perspective / J. Mater. Sci. 2009. N 1. P. 38 – 49.
2. Mishkin S. I. The use of carbon fiber plastics in the designs of unmanned vehicles (review) / Trudy VIAM. 2022. N 5. P. 8 – 20. DOI: 10.18577/2307-6046-2022-0-5-87-95
3. Alam P., Mamalis D., Robert C., et al. The fatigue of carbon fibre reinforced plastics — a review / Composites Part B. 2019. Vol. 166. P. 555 – 579. DOI: 10.1016/j.compositesb.2019.02.016
4. Guseinov K., Kudryavtsev O. A., Sapozhnikov S. B. Effectiveness of 2-D and 3-D modelling of dovetail joint of composite fan blade for choosing rational reinforcement schemes / PNRPU mechanics bulletin. 2021. N 1. P. 5 – 11. DOI: 10.15593/perm.mech/2021.1.01
5. Strizhius V. E. Evaluation of fatigue life of layered composites using normalized fatigue curves / Materialoved. Énerget. 2020. Vol. 26. N 3. P. 20 – 32 [in Russian]. DOI: 10.18721/JEST.26302
6. Sevenois R. D. B., Van Paepegem W. Fatigue Damage Modeling Techniques for Textile Composites: Review and Comparison with Unidirectional Composite Modeling Techniques / Appl. Mech. Rev. 2015. P. 12 – 27.
7. Kulkarni P. V., Sawant P. J., Kulkarni V. V. Fatigue life prediction and modal analysis of carbon fiber reinforced composites / Advances in Materials and Processing Technologies. 2018. Vol. 4. N 4. P. 651 – 659. DOI: 10.1080/2374068X.2018.1488799
8. Collins D. A. Failure of Materials in Mechanical Design. Analysis, Prediction, Prevention. — A Wiley Interscinece Publication, 1981. — 672 p.
9. Stepnov M. N., Zinin A. V. Prediction of fatigue resistance characteristics of materials and structural elements. — Moscow: Innovatsionnoe mashinostroenie, 2016. — 392 p. [in Russian].
10. Troshchenko V. T., Sosnovsky L. A. Fatigue resistance of metals and alloys. — Naukova dumka, 1987. — 505 p. [in Russian].
11. Luong M. P. Infrared thermographic scanning of fatigue in metals / Nuclear Engineering and Design. 1995. P. 363 – 376.
12. La Rosa G., Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components / International Journal of Fatigue. 2000. Vol. 22. P. 65 – 73.
13. Zaeimi M., De Finis R., Palumbo D., Galietti U. Fatigue limit estimation of metals based on the thermographic methods: A comprehensive review / Fatigue Fract. Eng. Mater. Struct. 2024. Vol. 47. N 3. P. 611 – 646. DOI: 10.22541/au.169088976.68628552/v1
14. Mahmoudi A., Khonsari M. M. Rapid evaluation of fatigue limit using energy dissipation / Fatigue Fract. Eng. Mater. Struct. 2023. Vol. 46. P. 2156 – 2167.
15. Terekhina A. I., Fedorova A. Yu., Bannikov M. V., Plekhov O. A. Development of a method for estimating the endurance limit of a material based on infrared thermography data / Vestnik PNIPU. Mekhanika. 2012. N 1. P. 115 – 127.
16. Liu T., Wang Z., Chen H., Wei X. Rapid Fatigue Limit Estimation of Metallic Materials Using Thermography-Based Approach / Metal. 2023. Vol. 13. P. 1130 – 1147. DOI: 10.3390/met13061147
17. Dusautoir B., Berthel S., Fouvry P., Matzen K.-D. Influence of post-processing treatments on fatigue limit of notched additive manufactured Ti-6AL-4V determined by rapid thermographic methodology / International Journal of Fatigue. 2024. P. 1 – 16. DOI: 10.1016/j.ijfatigue.2023.108034
18. Bemani M., Parareda S., Casellas D., et al. Rapid fatigue evaluation of additive manufactured specimens: Application to stainless steel AISI 316L obtained by laser metal powder bed fusion / International Journal of Fatigue. 2024. Vol. 184. P. 1 – 9. DOI: 10.1016/j.ijfatigue.2021.106207
19. Santonocito D., Gatto A., Risitano G. Energy release as a parameter for fatigue design of additive manufactured metals / Mat. Design. Process Comm. 2021. P. 255 – 273. DOI: 10.1002/mdp2.255
20. Bai G., Lamboul B., Paulmier P., et al. Fast fatigue limit estimation of woven composite materials by self-heating analysis / The First QIRT-ASIA Conference on Quantitative Infrared Thermography. 2015. P. 1 – 7. DOI: 10.21611/qirt.2015.0026
21. Huang J., Garnier C., Pastor M.-L., Gong X. J. Investigation of self-heating and life prediction in CFRP laminates under cyclic shear loading condition based on the infrared thermographic data / Engineering Fracture Mechanics. 2020. Vol. 229. P. 327 – 359. DOI: 10.1016/j.engfracmech.2020.106971
22. Li A., Huang J., Zhang C. Enabling rapid fatigue life prediction of short carbon fiber reinforced polyether-ether-ketone using a novel energy dissipation-based model / Composite structures. 2021. Vol. 272. P. 1 – 36. DOI: 10.1016/j.compstruct.2021.114227
23. Montesano J., Fawaz Z., Bougherara H. Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite / Composite Structures. 2013. Vol. 97. P. 76 – 83.
24. Colombo C., Bhujangrao T., Libonati F., Vergani L. Effect of delamination on the fatigue life of GFRP: A thermographic and numerical study / Composite Structures. 2019. Vol. 218. P. 152 – 161. DOI: 10.1016/j.compstruct.2019.03.023
25. Muller L., Roche J.-M., Hurmane A., et al. Investigation of self-heating and damage progression in woven carbon fibre composite materials, following the fibres direction, under static and cyclic loading / Journal of Composite Materials. 2021. Vol. 55. N 26. P. 3909 – 3924. DOI: 10.1177/00219983211025690
26. Najd J., Harizi W., Aboura Z., et al. Rapid estimation of the fatigue limit of Smart Polymer-Matrix Composites (PMC) using the self-heating tests / Composite Structures. 2022. Vol. 282. P. 115 – 126. DOI: 10.1016/j.compstruct.2021.115039
27. Yamamoto T., Ogawa Y., Hayashi M., et al. Fatigue limit estimation based on dissipated energy of butt laser-welded joints / Eng. Proc. 2023. Vol. 51. N 47. P. 22 – 26. DOI: 10.3390/engproc2023051047
28. Faria J. J. R., Fonseca L. G. A., Faria A. R., et al. Determination of the fatigue behavior of mechanical components through infrared thermographyc / Engineering Failure Analysis. 2022. Vol. 134. P. 106 – 118. DOI: 10.1016/j.engfailanal.2021.106018
29. Solomonov D. G., Sazhenkov N. A., Konev I. P., et al. Patterns of fatigue failure of a typical composite flange / Vestn. Perm. Nats. Issl. Politekhn. Univ. Mekh. 2023. N 3. P. 145 – 153. DOI: 10.15593/perm.mech/2023.3.12
30. Solomonov D. G., Nihamkin M. Sh., Toropicina A. V. Selection of structurally similar elements for fatigue testing of aircraft structures made of polymer composite materials / Vestn. Perm. Nats. Issl. Politekhn. Univ. Aerokosm. Tekhn. 2022. N 69. P. 62 – 70. DOI: 10.15593/2224-9982/2022.69.07
31. Solomonov D. G. Patterns of thermal behavior of G-shaped flanges made of polymer structural materials under cyclic loading / Vestn. Perm. Nats. Issl. Politekhn. Univ. Aerokosm. Tekhn. 2023. N 74. P. 30 – 38. DOI: 10.15593/2224-9982/2023.74.03
32. Balakirev A. A., Gladkii I. L., Mekhonoshin G. V., et al. Experimental study of the patterns of fatigue failure of thick carbon fiber laminated rods / Vestn. Perm. Nats. Issl. Politekhn. Univ. Aerokosm. Tekhn. 2023. N 72. P. 111 – 124. DOI: 10.15593/2224-9982/2023.72.09
33. Eder M. A., Sarhadi A., Chen X. A novel and robust method to quantify fatigue damage in fibre composite materials using thermal imagine analysis / International Journal of Fatigue. 2021. Vol. 150. P. 8. DOI: 10.1016/j.ijfatigue.2021.106326
34. Nourian-Avval A., Khonsar M. M. Rapid prediction of fatigue life based on thermodynamic entropy generation / International Journal of Fatigue. 2021. Vol. 145. P. 54 – 67. DOI: 10.1016/j.ijfatigue.2020.106105
35. Ignatova A. V., Bezmel’nitsyn A. V., Olivenko N. A., et al. Prediction of self-heating of fiberglass during cyclic bending / Mekh. Kompozit. Mater. 2022. Vol. 58. N 6. P. 1125 – 1144. DOI: 10.22364/mkm.58.6.02
36. Iziumova A. Yu., Vshivkov A. N., Prokhorov A. E., et al. Heat dissipation and acoustic emission features of titanium alloys in cyclic deformation mode / Acta Mechanica. 2021. DOI: 10.1007/s00707-020-02911-4 — EDN LDJZBU.
37. Ajrapetyan V. S., Kurilenko G. A. Analysis of the accuracy of determining individual endurance limits of thermographic method / Interekspo Geo-Sibir. 2017. Vol. 8. P. 134 – 140.
38. Belousov I. S., Bespalov V. A. Experimental determination of the interlayer fracture toughness of a composite material / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 12. P. 81 – 87. DOI: 10.26896/1028-6861-2023-89-12-81-87
39. Akhmetkhanov R. S. Analysis of the effect of the direction of reinforcement of a fibrous composite material on the inhomogeneity of localization of deformations and stresses using the method of thermoelastic response / Industr. Lab. Mater. Diagn 2024. Vol. 90. N 3. P. 62 – 69. DOI: 10.26896/1028-6861-2024-90-3-62-69
40. Huang J., Pastor M.-L., Garnier C., Gong X. Rapid evaluation of fatigue limit on thermographic data analysis / International Journal of Fatigue. 2017. Vol. 104. P. 293 – 301.
41. Shahmirzaloo A., Leonetti D., Moonen S. P. G., Blok R. A statistical method for rapid determination of endurance limit based on a thermographic method / Proc. 11th International Conference on Fiber-Reinforced Polymer (FRP) Composites in Civil Engineering. 2023. P. 245 – 256. DOI: 10.5281/zenodo.8104731
42. Gornet L., Sudevan D., Rozycki P. A study of various indicators to determine the fatigue limit for woven carbon/epoxy composites under self-heating methodology / Procedia Engineering. 2018. Vol. 213. P. 161 – 172. DOI: 10.1016/j.proeng.2018.02.018
Review
For citations:
Solomonov D.G., Nikhamkin M.Sh. Rapid estimation of the fatigue limit of polymer composite materials using infrared thermography. Industrial laboratory. Diagnostics of materials. 2025;91(2):76-84. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-2-76-84