Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of lanthanum substitution by strontium in lanthanum ferrites for gas-sensitive sensors by total reflection X-ray fluorescence

https://doi.org/10.26896/1028-6861-2025-91-4-5-11

Abstract

An approach for the simultaneous quantification of La, Fe, and Sr in solutions and suspensions of (La, Sr)FeO3 composites by the TXRF method has been developed to study the effect of lanthanum substitution with strontium on the sensory properties of lanthanum ferrites. A gallium solution with a concentration of 50 mg/liter was used as an internal standard for the determination of the elements. The validity of the obtained results was confirmed for sample solutions by inductively coupled plasma atomic emission spectrometry (ICP AES). No interelement effects were observed for La, Fe, and Sr when present together in solutions. The precision of the results of the determination (Sr) by the TXRF was calculated as 0.04, 0.05, 0.06 for La, Fe, and Sr, respectively. The results obtained for suspensions are caused to the small particle size (15 – 17 nm) and the uniform distribution of the internal standard in the aliquot with the chosen sample preparation method. It is shown that all samples have a single phase corresponding to pure lanthanum ferrite with an orthorhombic crystal lattice (ICDD 37-1493). The absence of extraneous reflexes on the diffractogram indicates the successful incorporation of Sr2+ cations into the La3+ positions. It is shown that the doping of strontium into lanthanum ferrite made it possible to increase the sensitivity of materials to CO, NH3, methanol and acetone, as well as to reduce the optimal operating temperature of the sensor by 50 – 150°C. At the same time, the best sensory properties were found for lanthanum ferrite nanofibers with a minimum concentration of introduced Sr (0.01 % at.). The absence of sensitivity of materials to methane and benzene is due to the greater stability of these molecules with respect to the acid-base active surface centers of La1 – xMexFeO3.

About the Authors

D. G. Filatova
Faculty of Chemistry, Lomonosov Moscow State University
Russian Federation

Daria G. Filatova,

1-3, Leninskie gory, Moscow, 119991.



V. B. Platonov
Faculty of Chemistry, Lomonosov Moscow State University
Russian Federation

Vadim B. Platonov,

1-3, Leninskie gory, Moscow, 119991.



Nikolai M. Malinin
Faculty of Materials Science, Lomonosov Moscow State University
Russian Federation

Nikolai M. Malinin,

1-73, Leninskie gory, Moscow, 119991.



A. A. Troitskiy
Baikov Institute of Metallurgy and Materials Science
Russian Federation

Artem A. Troitskiy,

49, Leninsky prosp., Moscow, 119334.



M. N. Rumyantseva
Faculty of Chemistry, Lomonosov Moscow State University
Russian Federation

Marina N. Rumyantseva,

1-3, Leninskie gory, Moscow, 119991.



References

1. Song P., Zhang H., Han D., et al. Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties / Sens. Actuators, B. 2014. Vol. 196. P. 140 – 146. DOI: 10.1016/j.snb.2014.02.006

2. Alharbi A., Sackmann A., et al. A highly selective sensor to acetylene and ethylene based on LaFeO3 / Sens. Actuators, B. 2020. Vol. 303. 127204. DOI: 10.1016/j.snb.2019.127204

3. Hu J., Chen X., Zhang Y. Batch fabrication of formaldehyde sensors based on LaFeO3 thin film with ppb-level detection limit / Sens. Actuators, B. 2021. Vol. 349. 130738. DOI: 10.1016/j.snb.2021.130738

4. Hao P., Qu G.-M., Song P., et al. Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas / Rare Met. 2021. Vol. 40. P. 1651 – 1661. DOI: 10.1007/s12598-020-01672-2

5. Zhu L., Wang J., Liu J., et al. Designing highly sensitive formaldehyde sensors via A-site cation defciency in LaFeO3 hollow nanofbers / Appl. Surf. Sci. 2022. Vol. 590. 153085. DOI: 10.1016/j.apsusc.2022.153085

6. Aranthady Ch., Jangid T., Gupta K., et al. Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: A comparative study of LaFeO3 pellet vs thin film / Sens. Actuators, B. 2021. Vol. 329. 129211. DOI: 10.1016/j.snb.2020.129211

7. Dash S., Mojumder S., Das T., et al. Highly sensitive and selective rGO-LaFeO3 nanocomposite based formaldehyde sensors towards air quality monitoring / Chemosphere. 2024. Vol. 367. 143499. DOI: 10.1016/j.chemosphere.2024.143499

8. Fu B., Bi L., Lin J., et al. Low-temperature detection and excellent selectivity of ethanol using LaFeO3 gas sensors with dual regulation of doping and non-stoichiometry / J. Alloys Compd. 2025. Vol. 1013. 178590. DOI: 10.1016/j.jallcom.2025.178590

9. Takalkar G., Bhosale R. R., AlMomani F., et al. Thermochemical splitting of CO2 using solution combustion LaMO3 (M = Co, Fe, Mn, Ni, Al, Cr, Sr) / Appl. Surf. Sci. 2020. Vol. 509. 144908. DOI: 10.1016/j.apsusc.2019.144908

10. Shikha P., Kang T. S., Randhawa B. S. Effect of different synthetic routes on the structural, morphological and magnetic properties of Ce doped LaFeO3 nanoparticles / J. Alloys Compd. 2015. Vol. 625. P. 336 – 345. DOI: 10.1016/j.jallcom.2014.11.074

11. Gluchowski P., Oganisian K., Tomala R., et al. Optical, dielectric and magnetic properties of La1 – xNdxFeO3 powders and ceramics / Ceramics. 2019. Vol. 2. P. 1 – 12. DOI: 10.3390/ceramics2010001

12. Doshi J., Reneker D. Electrospinning process and applications of electrospun fibers / J. Electrost. 1995. Vol. 35. P. 151 – 160. DOI: 10.1016/0304-3886(95)00041-8

13. Samanta P., Bagchi S., Mishra S. Synthesis and Sensing Characterization of ZnO Nanofibers Prepared by Electrospinning / Mater. Today: Proc. 2015. Vol. 2. P. 4499 – 4502. DOI: 10.1016/j.matpr.2015.10.061

14. Kim J.-H., Mirzaei A., Kim H. W., Kim S. S. Synthesis and Sensing Characterization of ZnO Nanofibers Prepared by Electrospinning / Sens. Actuators, B. 2019. Vol. 284. P. 628 – 637. DOI: 10.1016/j.snb.2018.12.120

15. Laia T.-Y., Fang T.-H., Hsiao Y.-J., Chan Ch.-A. Characteristics of Au-doped SnO2 – ZnO heteronanostructures for gas sensing applications / Vacuum. 2019. Vol. 166. P. 155 – 161. DOI: 10.1016/j.vacuum.2019.04.061

16. Wang T., Xu J., Li F., et al. Perovskite-structured LaFeO3 gas sensor modified by polyoxometalate electron acceptor with high sensitivity and low detection limit for acetone gas / J. Rare Earths. 2024. DOI: 10.1016/j.jre.2024.11.006

17. Bohlen A., Fernández-Ruiz R. Experimental evidence of matrix effects in total-reflection X-ray fluorescence analysis: Coke case. / Talanta. 2020. Vol. 209. 120562. DOI: 10.1016/j.talanta.2019.120562

18. Allegretta I., Gattullo C. E., Renna M., et al. Rapid multi-element characterization of microgreens via total-reflection X-ray fluorescence (TXRF) spectrometry / Food Chem. 2019. Vol. 296. P. 86 – 93. DOI: 10.1016/j.foodchem.2019.05.187

19. Pashkova G. V., Aisueva T. S., Finkelshtein A. L., et al. Quantitative approaches to the determination of elements in lake sediments by total reflection X-ray fluorescence / Microchem. J. 2018. Vol. 143. P. 264 – 271. DOI: 10.1016/j.microc.2018.08.020

20. Allegretta I., Giannelli R., Grisorio R., et al. Chemical analysis of cesium lead-halide perovskite nanocrystals by total-reflection X-ray fluorescence spectroscopy / Spectrochim. Acta, Part B. 2020. Vol. 164. 105750. DOI: 10.1016/j.sab.2019.105750

21. Samoilova A. A., Petrakova N. V., Andreeva N. A., et al. Quantification of Calcium, Phosphorus, and Cerium in Novel Biocompatible Materials by Total Reflection X-Ray Fluorescence Spectroscopy / Inorg. Mater. 2024. Vol. 60. P. 33 – 37. DOI: 10.1134/S0020168524700055

22. Filatova D. G., Bogdanova A. P., Krivetskiy V. V., et al. Quantification of Si Dopant in β-Ga2O3-Based Semiconductor Gas Sensors by Total Reflection X-Ray Fluorescence Spectroscopy (TXRF) / Inorg. Mater. 2023. Vol. 59. P. 1433 – 1436. DOI: 10.1134/S0020168523140066

23. Dhara S., Misra N. L. Elemental characterization of nuclear materials using total reflection X-ray fluorescence spectrometry / TrAC: Trends Anal. Chem. 2019. Vol. 116. P. 31 – 43. DOI: 10.1016/j.trac.2019.04.017

24. Villoria J. A., Alvarez-Galvan M. C., Navarro R. M., et al. Zirconia-supported LaCoO3 catalysts for hydrogen production by oxidative reforming of diesel: Optimization of preparation conditions / Catalysis Today. 2008. Vol. 138. P. 135 – 140. DOI: 10.1016/j.cattod.2008.06.016

25. Zhilicheva A. N., Pashkova G. V., Karkhova A. V., et al. Determination of S, Ni, Cu in cooper-nickel sulfide ores by total reflection X-ray fluorescence analysis: experience of participation in the interlaboratory comparisons / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 7. P. 8 – 16. DOI: 10.26896/1028-6861-2024-90-7-8-16


Review

For citations:


Filatova D.G., Platonov V.B., Malinin N.M., Troitskiy A.A., Rumyantseva M.N. Study of lanthanum substitution by strontium in lanthanum ferrites for gas-sensitive sensors by total reflection X-ray fluorescence. Industrial laboratory. Diagnostics of materials. 2025;91(4):5-11. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-4-5-11

Views: 198


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)