

The influence of low-energy accelerated electrons on the structural characteristics of unsaturated fatty acids by high-resolution liquid chromatography-mass spectrometry
https://doi.org/10.26896/1028-6861-2025-91-4-12-21
Abstract
A method of studying the radiation effect of low-energy electron beam on the structural characteristics of a number of unsaturated fatty acids present in fish oil: oleic, linoleic, arachidonic, eicosapentaenoic and docosahexaenoic acids using high-resolution liquid chromatography-mass spectrometry has been proposed. The solution used was: 1 μl of commercially available fish oil containing omega-3 and omega-6 polyunsaturated fatty acids in 1 ml of 0. 9 % NaCl physiological solution. The samples were irradiated at the UELR-1-25-T-001 electron accelerated with an energy of 1 MeV at an average beam current of 0.5 μA and a dose rate of 10 Gy/sec at doses of 0.25, 0.5, 1, 5, and 8 kGy. The structural integrity of selected unsaturated fatty acids was analyzed by high-resolution liquid chromatography-mass spectrometry with high-resolution tandem mass spectrometric detection (HPLC-MS/MS). The content of intact unsaturated fatty acid molecules was estimated by comparing the peak areas of analytes in the irradiated solution with a control sample that was not irradiated. Taking into account the optimization of detection conditions, detection limits were calculated for each acid, and two variants of identification of the presence of unsaturated fatty acids in the sample were distinguished: reliably detected and not detected. Using the developed approach, a decrease in the content of omega-3 fatty acids — eicosapentaenoic acid and docosahexaenoic acid in water samples as a result of exposure to low-energy accelerated electrons in the dose range from 0.25 to 8 kGy at an average power of 10 Gy/sec was established.
About the Authors
A. V. BrownRussian Federation
Arkady V. Brown,
1-3, Leninskie gory, Moscow, 119991.
V. S. Ipatova
Russian Federation
Victoria S. Ipatova,
1-2, Leninskie gory, Moscow, 119991.
U. A. Bliznyuk
Russian Federation
Ulyana A. Bliznyuk,
1-2, Leninskie gory, Moscow, 119991.
Polina Yu. Borshchegovskaya
Russian Federation
Polina Yu. Borshchegovskaya,
1-2, Leninskie gory, Moscow, 119991.
A. P. Chernyaev
Russian Federation
Alexander P. Chernyaev,
1-2, Leninskie gory, Moscow, 119991.
I. A. Ananyeva,
Russian Federation
Irina A. Ananyeva,
1-3, Leninskie gory, Moscow, 119991.
I. A. Rodin
Russian Federation
Igor A. Rodin,
1-3, Leninskie gory, Moscow, 119991;
2-2, B. Pirogovskaya ul., Moscow, 119435.
References
1. Shahidi F., Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits / Annu. Rev. Food Sci. Technol. 2018. Vol. 9. P. 345 – 381. DOI: 10.1146/annurev-food-111317-095850
2. Akyol E., Geçgel U., Apaydin D. Quality characteristics of oils extracted from γ-irradiated Chia (Salvia hispanica L.) seeds / J. Am. Oil Chem. Soc. 2022. Vol. 99. No. 10. P. 891 – 898. DOI: 10.1002/aocs.12626
3. Ostroumova I. N., Lukina Yu. N., Lyutikov A. A., Shumilina A. K. Changes in the spectrum of fatty acid composition during lipid peroxidation of whitefish (Coregonidae) from natural reservoirs and aquaculture / Vopr. Rybolov. 2024. Vol. 25. No. 2. P. 89 – 104 [in Russian]. DOI: 10.36038/0234-2774-2024-25-2-89-104
4. Costantini L., Molinari R., Farinon B., Merendino N. Impact of omega-3 fatty acids on the gut microbiota / Int. J. Mol. Sci. 2017. Vol. 18. No. 12. 2645. DOI: 10.3390/ijms18122645
5. Li X., Bi X., Wang S., et al. Therapeutic potential of ω-3 polyunsaturated fatty acids in human autoimmune diseases / Front. Immunol. 2019. Vol. 10. 2241. DOI: 10.3389/fimmu.2019.02241
6. Zhang Y., Zhang B., Dong L., Chang P. Potential of Omega-3 polyunsaturated fatty acids in managing chemotherapy- or radiotherapy-related intestinal microbial dysbiosis / Adv. Nutr. 2019. Vol. 10. No. 1. P. 133 – 147. DOI: 10.1093/advances/nmy076
7. Basha S., Elrefai S., Moussa M. Assessment of the topical and systemic Effects of Omega-3 on oral mucosal wound healing in albino rats: a histopathological and biochemical study / Madridge J. Case Rep. Stud. 2018. Vol. 2. No. 1. P. 26 – 31. DOI: 10.18689/mjcrs-1000107
8. Serafini M. M., Catanzaro M., Fagiani F., et al. Modulation of Keap1/Nrf2/ARE signaling pathway by Curcuma- and garlic-derived hybrids / Front. Pharmacol. 2020. Vol. 28. No. 10. 1597. DOI: 10.3389/fphar.2019.01597
9. Chernyaev A. P. Radiation Technologies. Science. National economy. Medicine. — Moscow: Moscow University Press, 2019. — 231 p. [in Russian].
10. Chmielewski A. G. Radiation Technologies: The Future Is Today / Radiat. Phys. Chemy. 2023. Vol. 213. 111233. DOI: 10.1016/j.radphyschem.2023.111233
11. Indiarto R., Pratama A. W., Sari T. I., Theodora H. C. Food Irradiation Technology: A Review of The Uses and Their Capabilities / Int. J. Eng. Trends Technol. 2020. Vol. 68. No. 12. P. 91 – 98. DOI: 10.14445/22315381/IJETT-V68I12P216
12. Farkas J., Ehlermann D. A. E., Mohácsi-Farkas C. Food Technologies: Food Irradiation / Encyclopedia of Food Safety. — Elsevier, 2014. P. 178 – 186.
13. Xiong Y. L., Guo A. Animal and plant protein oxidation: Chemical and functional property significance / Foods. 2020. Vol. 10. No. 1. 40. DOI: 10.3390/foods10010040
14. Arapcheska M., Spasevska H., Ginovska M. Effect of irradiation on food safety and quality / Curr. Trends Nat. Sci. 2020. Vol. 9. No. 18. P. 100 – 106. DOI: 10.47068/ctns.2020.v9i18.014
15. Domínguez R., Pateiro M., Gagaoua M., et al. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products / Antioxidants. 2019. Vol. 8. No. 10. 429. DOI: 10.3390/antiox8100429
16. Abd El H. A. H. M. Lipid peroxidation end-products as a key of oxidative stress: effect of antioxidant on their production and transfer of free radicals / A. Catala, Ed. Lipid peroxidation. — UK: IntechOpen, 2012. DOI: 10.5772/45944
17. Momchilova S., Kazakova A., Taneva A., et al. Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts / Molecules. 2023. Vol. 28. No. 3. 1439. DOI: 10.3390/molecules28031439
18. Chemat A., Song M., Li Y., Fabiano-Tixier A.-S. Shade of Innovative Food Processing Techniques: Potential Inducing Factors of Lipid Oxidation / Molecules. 2023. Vol. 28. No. 24. 8138. DOI: 10.3390/molecules28248138
19. Tomac A., Cova M. C., Narvaiz P., Yeannes M. I. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets / Radiat. Phys. Chem. 2015. Vol. 106. P. 337 – 342. DOI: 10.1016/j.radphyschem.2014.08.010
20. Cheng A., Wan F., Xu T., et al. Effect of irradiation and storage time on lipid oxidation of chilled pork / Radiat. Phys. Chem. 2011. Vol. 80. No. 3. P. 475 – 480. DOI: 10.1016/j.radphyschem.2010.10.003
21. Lisitsyn A. B., Chernukha I. M., Lunina O. I. Fatty Acid Composition of Meat from Various Animal Species and the Role of Technological Factors in Trans-isomerization of Fatty Acids / Foods Raw Mater. 2017. Vol. 5. No. 2. P. 54 – 61. DOI: 10.21603/2308-4057-2017-2-54-61
22. Harlina P. W., Maritha V., Musfiroh I., et al. Possibilities of liquid chromatography mass spectrometry (LC-MS)-based metabolomics and lipidomics in the authentication of meat products: a mini review / Food Sci. Anim. Resour. 2022. Vol. 42. No. 5. P. 744 – 761. DOI: 10.5851/kosfa.2022.e37
23. Braun A. V., Bliznyuk U. A., Borshchegovskaya P. Yu., et al. High-Performance Liquid Chromatography-Mass Spectrometry Study of the Effect of Accelerated Electrons on the Structure of Bovine Serum Albumin / Inorg. Mater. 2024. P. 1 – 10. DOI: 10.1134/S002016852470002X
24. Bliznyuk U. A., Borshchegovskaya P. Yu., Esaulova O. V., et al. Influence of accelerated electrons on survival of Escherichia coli bacteria / Tekhnol. Zhiv. Sist. 2024. Vol. 21. No. 1. P. 75 – 85 [in Russian].
25. Chernyaev A. P., Avdyukhina V. M., Bliznyuk U. A., et al. Study of the Effectiveness of Treating Trout with Electron Beam and X-Ray Radiation / Bull. RAS: Physics. 2020. Vol. 84. No. 4. P. 385 – 390. DOI: 10.3103/S106287382004005X
26. https://istina.msu.ru/equipment/card/615320740 [in Russian] (accessed 2/5/2025).
Review
For citations:
Brown A.V., Ipatova V.S., Bliznyuk U.A., Borshchegovskaya P.Yu., Chernyaev A.P., Ananyeva, I.A., Rodin I.A. The influence of low-energy accelerated electrons on the structural characteristics of unsaturated fatty acids by high-resolution liquid chromatography-mass spectrometry. Industrial laboratory. Diagnostics of materials. 2025;91(4):12-21. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-4-12-21