Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The influence of low-energy accelerated electrons on the structural characteristics of unsaturated fatty acids by high-resolution liquid chromatography-mass spectrometry

https://doi.org/10.26896/1028-6861-2025-91-4-12-21

Abstract

A method of studying the radiation effect of low-energy electron beam on the structural characteristics of a number of unsaturated fatty acids present in fish oil: oleic, linoleic, arachidonic, eicosapentaenoic and docosahexaenoic acids using high-resolution liquid chromatography-mass spectrometry has been proposed. The solution used was: 1 μl of commercially available fish oil containing omega-3 and omega-6 polyunsaturated fatty acids in 1 ml of 0. 9 % NaCl physiological solution. The samples were irradiated at the UELR-1-25-T-001 electron accelerated with an energy of 1 MeV at an average beam current of 0.5 μA and a dose rate of 10 Gy/sec at doses of 0.25, 0.5, 1, 5, and 8 kGy. The structural integrity of selected unsaturated fatty acids was analyzed by high-resolution liquid chromatography-mass spectrometry with high-resolution tandem mass spectrometric detection (HPLC-MS/MS). The content of intact unsaturated fatty acid molecules was estimated by comparing the peak areas of analytes in the irradiated solution with a control sample that was not irradiated. Taking into account the optimization of detection conditions, detection limits were calculated for each acid, and two variants of identification of the presence of unsaturated fatty acids in the sample were distinguished: reliably detected and not detected. Using the developed approach, a decrease in the content of omega-3 fatty acids — eicosapentaenoic acid and docosahexaenoic acid in water samples as a result of exposure to low-energy accelerated electrons in the dose range from 0.25 to 8 kGy at an average power of 10 Gy/sec was established.

About the Authors

A. V. Brown
Faculty of Chemistry, Lomonosov Moscow State University
Russian Federation

Arkady V. Brown,

1-3, Leninskie gory, Moscow, 119991.



V. S. Ipatova
Skobeltsyn Institute of Nuclear Physics
Russian Federation

Victoria S. Ipatova,

1-2, Leninskie gory, Moscow, 119991.



U. A. Bliznyuk
Skobeltsyn Institute of Nuclear Physics; Faculty of Physics, Lomonosov Moscow State University
Russian Federation

Ulyana A. Bliznyuk,

1-2, Leninskie gory, Moscow, 119991.



Polina Yu. Borshchegovskaya
Skobeltsyn Institute of Nuclear Physics; Faculty of Physics, Lomonosov Moscow State University
Russian Federation

Polina Yu. Borshchegovskaya,

 1-2, Leninskie gory, Moscow, 119991.



A. P. Chernyaev
Skobeltsyn Institute of Nuclear Physics; Faculty of Physics, Lomonosov Moscow State University
Russian Federation

Alexander P. Chernyaev,

1-2, Leninskie gory, Moscow, 119991.



I. A. Ananyeva,
Faculty of Chemistry, Lomonosov Moscow State University
Russian Federation

Irina A. Ananyeva,

1-3, Leninskie gory, Moscow, 119991.



I. A. Rodin
Faculty of Chemistry, Lomonosov Moscow State University; Sechenov University, Department of Epidemiology and Evidence-Based Medicine
Russian Federation

Igor A. Rodin,

1-3, Leninskie gory, Moscow, 119991;

2-2, B. Pirogovskaya ul., Moscow, 119435.



References

1. Shahidi F., Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits / Annu. Rev. Food Sci. Technol. 2018. Vol. 9. P. 345 – 381. DOI: 10.1146/annurev-food-111317-095850

2. Akyol E., Geçgel U., Apaydin D. Quality characteristics of oils extracted from γ-irradiated Chia (Salvia hispanica L.) seeds / J. Am. Oil Chem. Soc. 2022. Vol. 99. No. 10. P. 891 – 898. DOI: 10.1002/aocs.12626

3. Ostroumova I. N., Lukina Yu. N., Lyutikov A. A., Shumilina A. K. Changes in the spectrum of fatty acid composition during lipid peroxidation of whitefish (Coregonidae) from natural reservoirs and aquaculture / Vopr. Rybolov. 2024. Vol. 25. No. 2. P. 89 – 104 [in Russian]. DOI: 10.36038/0234-2774-2024-25-2-89-104

4. Costantini L., Molinari R., Farinon B., Merendino N. Impact of omega-3 fatty acids on the gut microbiota / Int. J. Mol. Sci. 2017. Vol. 18. No. 12. 2645. DOI: 10.3390/ijms18122645

5. Li X., Bi X., Wang S., et al. Therapeutic potential of ω-3 polyunsaturated fatty acids in human autoimmune diseases / Front. Immunol. 2019. Vol. 10. 2241. DOI: 10.3389/fimmu.2019.02241

6. Zhang Y., Zhang B., Dong L., Chang P. Potential of Omega-3 polyunsaturated fatty acids in managing chemotherapy- or radiotherapy-related intestinal microbial dysbiosis / Adv. Nutr. 2019. Vol. 10. No. 1. P. 133 – 147. DOI: 10.1093/advances/nmy076

7. Basha S., Elrefai S., Moussa M. Assessment of the topical and systemic Effects of Omega-3 on oral mucosal wound healing in albino rats: a histopathological and biochemical study / Madridge J. Case Rep. Stud. 2018. Vol. 2. No. 1. P. 26 – 31. DOI: 10.18689/mjcrs-1000107

8. Serafini M. M., Catanzaro M., Fagiani F., et al. Modulation of Keap1/Nrf2/ARE signaling pathway by Curcuma- and garlic-derived hybrids / Front. Pharmacol. 2020. Vol. 28. No. 10. 1597. DOI: 10.3389/fphar.2019.01597

9. Chernyaev A. P. Radiation Technologies. Science. National economy. Medicine. — Moscow: Moscow University Press, 2019. — 231 p. [in Russian].

10. Chmielewski A. G. Radiation Technologies: The Future Is Today / Radiat. Phys. Chemy. 2023. Vol. 213. 111233. DOI: 10.1016/j.radphyschem.2023.111233

11. Indiarto R., Pratama A. W., Sari T. I., Theodora H. C. Food Irradiation Technology: A Review of The Uses and Their Capabilities / Int. J. Eng. Trends Technol. 2020. Vol. 68. No. 12. P. 91 – 98. DOI: 10.14445/22315381/IJETT-V68I12P216

12. Farkas J., Ehlermann D. A. E., Mohácsi-Farkas C. Food Technologies: Food Irradiation / Encyclopedia of Food Safety. — Elsevier, 2014. P. 178 – 186.

13. Xiong Y. L., Guo A. Animal and plant protein oxidation: Chemical and functional property significance / Foods. 2020. Vol. 10. No. 1. 40. DOI: 10.3390/foods10010040

14. Arapcheska M., Spasevska H., Ginovska M. Effect of irradiation on food safety and quality / Curr. Trends Nat. Sci. 2020. Vol. 9. No. 18. P. 100 – 106. DOI: 10.47068/ctns.2020.v9i18.014

15. Domínguez R., Pateiro M., Gagaoua M., et al. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products / Antioxidants. 2019. Vol. 8. No. 10. 429. DOI: 10.3390/antiox8100429

16. Abd El H. A. H. M. Lipid peroxidation end-products as a key of oxidative stress: effect of antioxidant on their production and transfer of free radicals / A. Catala, Ed. Lipid peroxidation. — UK: IntechOpen, 2012. DOI: 10.5772/45944

17. Momchilova S., Kazakova A., Taneva A., et al. Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts / Molecules. 2023. Vol. 28. No. 3. 1439. DOI: 10.3390/molecules28031439

18. Chemat A., Song M., Li Y., Fabiano-Tixier A.-S. Shade of Innovative Food Processing Techniques: Potential Inducing Factors of Lipid Oxidation / Molecules. 2023. Vol. 28. No. 24. 8138. DOI: 10.3390/molecules28248138

19. Tomac A., Cova M. C., Narvaiz P., Yeannes M. I. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets / Radiat. Phys. Chem. 2015. Vol. 106. P. 337 – 342. DOI: 10.1016/j.radphyschem.2014.08.010

20. Cheng A., Wan F., Xu T., et al. Effect of irradiation and storage time on lipid oxidation of chilled pork / Radiat. Phys. Chem. 2011. Vol. 80. No. 3. P. 475 – 480. DOI: 10.1016/j.radphyschem.2010.10.003

21. Lisitsyn A. B., Chernukha I. M., Lunina O. I. Fatty Acid Composition of Meat from Various Animal Species and the Role of Technological Factors in Trans-isomerization of Fatty Acids / Foods Raw Mater. 2017. Vol. 5. No. 2. P. 54 – 61. DOI: 10.21603/2308-4057-2017-2-54-61

22. Harlina P. W., Maritha V., Musfiroh I., et al. Possibilities of liquid chromatography mass spectrometry (LC-MS)-based metabolomics and lipidomics in the authentication of meat products: a mini review / Food Sci. Anim. Resour. 2022. Vol. 42. No. 5. P. 744 – 761. DOI: 10.5851/kosfa.2022.e37

23. Braun A. V., Bliznyuk U. A., Borshchegovskaya P. Yu., et al. High-Performance Liquid Chromatography-Mass Spectrometry Study of the Effect of Accelerated Electrons on the Structure of Bovine Serum Albumin / Inorg. Mater. 2024. P. 1 – 10. DOI: 10.1134/S002016852470002X

24. Bliznyuk U. A., Borshchegovskaya P. Yu., Esaulova O. V., et al. Influence of accelerated electrons on survival of Escherichia coli bacteria / Tekhnol. Zhiv. Sist. 2024. Vol. 21. No. 1. P. 75 – 85 [in Russian].

25. Chernyaev A. P., Avdyukhina V. M., Bliznyuk U. A., et al. Study of the Effectiveness of Treating Trout with Electron Beam and X-Ray Radiation / Bull. RAS: Physics. 2020. Vol. 84. No. 4. P. 385 – 390. DOI: 10.3103/S106287382004005X

26. https://istina.msu.ru/equipment/card/615320740 [in Russian] (accessed 2/5/2025).


Review

For citations:


Brown A.V., Ipatova V.S., Bliznyuk U.A., Borshchegovskaya P.Yu., Chernyaev A.P., Ananyeva, I.A., Rodin I.A. The influence of low-energy accelerated electrons on the structural characteristics of unsaturated fatty acids by high-resolution liquid chromatography-mass spectrometry. Industrial laboratory. Diagnostics of materials. 2025;91(4):12-21. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-4-12-21

Views: 90


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)