

Study of dielectric properties of high-energy radio-absorbing composites
https://doi.org/10.26896/1028-6861-2025-91-4-28-35
Abstract
The solution of problems in the field of microwave electrotechnology related to mathematical modelling, development of installations or technology of electromagnetic field influence on the processing object requires knowledge of dielectric properties of high-energy radio-absorbing composites. The paper presents the results of computational and experimental study of dielectric properties of composite materials based on epoxy matrix with different absorbing fillers. Dielectric properties of materials were determined using the waveguide method based on the determination of the complex reflection coefficient and passage of electromagnetic waves through the working chamber with the investigated sample. By means of modelling the electric field strength distribution, the optimum geometry of the electromagnetic wave in the measuring microwave line (frequency — 2450 MHz) was found. It was found that the use of silicon carbide as an absorbing filler in the composite is very promising, providing a high temperature of its heating at dissipation of microwave energy. At the same time, the results of in-situ experiment of measuring dielectric properties of composites with different fillers and numerical results showed convergence with an error of 14%. The obtained results can be used in the creation of new radio-absorbing composites on the polymer basis with a given complex of functional properties.
About the Authors
A. S. SivakRussian Federation
Anton S. Sivak,
1, ul. B. V. Spitsyna, Saratov, 410086.
S. V. Trigorlyi
Russian Federation
Sergey V. Trigorlyi,
1, ul. B. V. Spitsyna, Saratov, 410086.
S. G. Kalganova
Russian Federation
Svetlana G. Kalganova,
1, ul. B. V. Spitsyna, Saratov, 410086.
Yu. A. Kadykova
Russian Federation
Yulia A. Kadykova,
1, ul. B. V. Spitsyna, Saratov, 410086.
G V. Sakhadzhi
Russian Federation
Georgy V. Sakhadzhi,
83, ul. Astrakhanskaya, Saratov, 410012.
T. P. Sivak
Russian Federation
Tatyana P. Sivak,
1, ul. B. V. Spitsyna, Saratov, 410086.
E. Yu. Vasinkina
Russian Federation
Ekaterina Yu. Vasinkina,
1, ul. B. V. Spitsyna, Saratov, 410086.
References
1. Bakina L. I., Golubev A. N., Zefirov V. L. Structural carbon plastics as a perspective material for creation of radio-absorbing materials / Antennas. 2023. No. 3(283). P. 71 – 74 [in Russian].
2. Saeed Fatma S., Ahmed S. Elkorany, Adel A. Saleeb, El-Sayed M. El-Rabaie. Electromagnetic Absorbing Materials / Menoufia Journal of Electronic Engineering Research. 2021. Vol. 30. No. 1. P. 1 – 15. DOI: 10.21608/mjeer.2020.101044
3. Kirillov V. Yu., Zhukov P. A., Zhuravlev S. Yu., Tomilin M. M. Radio-absorbing materials for spacecraft / Kosmicheskie issledovaniya. 2020. Vol. 58. No. 5. P. 412 – 418 [in Russian].
4. Bychenok D. S., Plyushch A. O., Gorokhov G. V. Absorbers of microwave radiation based on corrugated composites with carbon fibres / Zhurnal tekhnicheskoi fiziki. 2016. Vol. 86. No. 12. P. 124 – 128 [in Russian].
5. Gulmagomedov N. H., Lukashenko Yu. I. Influence of heating on radio engineering properties of flexible radio absorbing material / MPEI Bulletin. 2017. No. 4. P. 142 – 145 [in Russian]. DOI: 10.24160/1993-6982-2017-4-142-145
6. Chekhonin K. A. Current state and development of the theory of curing high-energy composite polymer materials / Journal of SFU. Mathematics and Physics. 2024. Vol. 17. No. 1. P. 106 – 114.
7. Rybakov A. P., Kozlov A. N., Kuchevasov O. V., et al. Model of reaction of solid rocket fuels on the impact of ultrahigh-frequency radiation / Vestnik IGTU. 2008. No. 2. P. 96 – 98 [in Russian].
8. Khimenko L. L., Rybakov A. P., Rybakov N. A., Kozlov A. N. Experimental study of the effect of electromagnetic microwave radiation on parts made of polymeric high-energy materials / Prikl. Mekh. Tekhn. Fiz. 2014. Vol. 55. No. 4(326). P. 3 – 10 [in Russian].
9. Khasanshin R. Kh., Kostyuk V. I. Influence of irradiation by high-energy electrons on gas emission of polymer composite materials / Vopr. Atom. Nauki Tekhn. 2007. No. 1 – 2. P. 9 – 16 [in Russian].
10. Kondratev R. V. Microwave solid fuel ignition / Journal of Physics: Conference Series 2094 052054. 2021. P. 1 – 6. DOI: 10.1088/1742-6596/2094/5/052054
11. Usherenko S., Granberg A., Sobolev V. High-energy physical effects at formation of composite materials / Scientific Israel — Technological Advantages. 2010. Vol. 12. No. 1 – 2. P. 128 – 133.
12. Vasinkina E. Y., Kalganova S. G., Kadykova Yu. A., Levkina N. L. Study of the Properties of Microwave Modified Basalt Fiber Reinforced Epoxy Polymer / Russian Journal of General Chemistry. 2023. Vol. 93. No. 6. P. 1611 – 1615. DOI: 10.1134/s1070363223060361
13. Taranets E. A., Astakhov P. S., Murzina E. D. Evaluation of the influence of UV pretreatment on biodegradation of plastic materials / Usp. Khimii Khim. Tekhnol. 2023. Vol. 37. No. 12(274). P. 170 – 172 [in Russian].
14. Krylov V. P., Chirkov R. A., Zhitelev A. E., Zabezhailov M. O. Study of the dielectric properties of decomposing materials during heating / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 5. P. 33 – 39 [in Russian]. DOI: 10.26896/1028-6861-2024-90-5-33-39
15. Sivak A. S., Kalganova S. G., Kadykova Yu. A., Chermashentseva T. P. Study of dielectric indicators of filled epoxy compounds / II Int. sci.-tech. conf. «Current issues of modern science, technology and education»: coll. works. — Engels: SGTU im. Yu. A. Gagarina, 2021. P. 123 – 126 [in Russian].
16. Korsakov V. G., Alekseev S. A., Sychev M. M., et al. Prediction of dielectric properties of polymer composites based on the thermodynamic model / Zh. Prikl. Khimii. 2007. Vol. 80. No. 11. P. 1908 – 1912 [in Russian].
17. Sonnov N. V., Leukhin S. A., Gerdt A. D. Investigation of dielectric properties of structural radio-absorbing materials / Élektron. Mikroélektron. SVCh. 2021. Vol. 1. P. 347 – 350 [in Russian].
18. Gaitukieva Z. Kh., Akhriev A. S., Khasbulatova Z. S., et al. Investigation of dielectric properties of polymer composites / All-Russian scientific and practical conference «Higher Education and Science»: coll. works. — Magas, 2019. P. 141 – 146 [in Russian].
19. Arkhangelsky Yu. S. Reference book on microwave electrothermia. — Saratov: Nauchnaya kniga, 2011. — 560 p. [in Russian].
20. Arkhangelsky Yu. S., Trigorly S. V. Computer Modelling of Microwave Electrothermal Processes and Installations. — Saratov: SGTU, 2006. — 211 p. [in Russian].
21. Trigorly S., Yakovlev A., Kalganova S., et al. Mathematical Simulation of Electrodynamic and Thermal Processes in Electrical Process Plants / Lecture Notes in Mechanical Engineering. 2022. P. 131 – 141. DOI: 10.1007/978-981-16-9376-2_13
22. Fomin D. G., Dudarev N. V., Darovskikh S. N. Analysis of methods for measuring the dielectric properties of materials in the microwave wavelength range / Zh. Radioélektron. 2021. No. 6. P. 1 – 12 [in Russian]. DOI: 10.30898/1684-1719.2021.6.6
23. Sovlukov A. S. Microwave waveguide methods of measurements of physical quantities / Datchiki Sist. 2020. No. 8(250). P. 35 – 43 [in Russian].
24. Parkhomenko M. P., Kalenov D. S., Eremin I. S., et al. Waveguide method of measurements of electromagnetic parameters of materials in the microwave range and estimation of measurement error / Zh. Radioélektron. 2018. No. 9. P. 9 [in Russian]. DOI: 10.30898/1684-1719.2018.9.6
25. Ivanov V., Sherimov D., Tokarev I., Repin V. Methods of measuring the dielectric properties of materials at 2.45 GHz / Élektron. Mikroélektron. SVCh. 2021. Vol. 1. P. 595 – 599 [in Russian].
26. Arkhangelsky Yu. S. About accuracy of measurements of dielectric parameters of the processed object in microwave electrothermia / Vopr. Élektrotekhnol. 2015. No. 4(9). P. 108 – 112 [in Russian].
27. Parshin V. V., Serov E. A., Sobolev D. I., et al. Resonator method for studying dielectric characteristics of caustobiolites / Zh. SFU. Ser. Khimiya. 2021. Vol. 14. No. 3. P. 315 – 324 [in Russian]. DOI: 10.17516/1998-2836-0239
28. Cook R. J., Jones R. G. Correction to open-resonator permittivity and loss measurements / Electronics Letters. 1976. Vol. 12(1). P. 1 – 2. DOI: 10.1049/el:19760001
29. Shirokov V. V., Romanov A. M. Investigation of dielectric characteristics of glass fiber reinforced plastic by waveguide method / Aviats. Mater. Tekhnol. 2013. No. 4(29). P. 62 – 68 [in Russian].
30. Nicolson A. M., Ross G. F. Measurement of the intrinsic properties of materials by time domain techniques / IEEE Transactions on Instrumentation and Measurement. 1970. Vol. 19. No. 4. P. 377 – 382. DOI: 10.1109/tim.1970.4313932
31. Sivak A. S., Sakhadzhi G. V., Kalganova S. G., et al. Influence of microwave electromagnetic field on temperature distribution in composite materials / Élektrichestvo. 2023. No. 11. P. 27 – 33 [in Russian].
32. Trigorly S. V., Kalganova S. G., Kadykova Yu. A., et al. Modelling of microwave heating of dielectrics with microwave energy-absorbing fillers in chambers with travelling wave / Vopr. Élektrotekhnol. 2020. No. 4(29). P. 15 – 23 [in Russian].
33. Kurushin A. A. Solution of multiphysics microwave problems with the help of CAD COMSOL. — Moscow: One-Book, 2016. — 376 p. [in Russian].
34. Jian-Ming J. The Finite Element Method in Electromagnetics. — Wiley-IEEE Press, 2002. — 389 p.
35. Igoshina S. E., Mukhaev D. A., Krupkin E. I., Karmanov A. A. Modelling of the process of electromagnetic waves propagation in radio-absorbing Ni-Zn ferrites / Fund. Probl. Sovr. Materialoved. 2023. Vol. 20. No. 3. P. 329 – 337 [in Russian].
36. Khibel M. Fundamentals of vector analysis of circuits. — Moscow: MEI, 2009. — 500 p. [in Russian].
37. Kasatkin A. V., Matvienko I. V. Heat resistance of silicide coatings on molybdenum and its alloys / Neorg. Mater. 1994. Vol. 30. No. 7. P. 928 – 931 [in Russian].
38. Kargin V. A. Encyclopedia of Polymers. — Moscow: Sovetskaya éntsiklopediya, 1972. — 1052 p. [in Russian].
Review
For citations:
Sivak A.S., Trigorlyi S.V., Kalganova S.G., Kadykova Yu.A., Sakhadzhi G.V., Sivak T.P., Vasinkina E.Yu. Study of dielectric properties of high-energy radio-absorbing composites. Industrial laboratory. Diagnostics of materials. 2025;91(4):28-35. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-4-28-35