Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Early damage accumulation caused by cyclic loading of composite plate with hole

https://doi.org/10.26896/1028-6861-2025-91-4-51-66

Abstract

Novel experimental technique, which provides quantitative description of damage indicators evolution related to cyclic loading of composite specimens with stress concentrators, is developed and implemented. Involved indicators represent by itself deformation response to narrow notch inserting. This notch is emanated form the edge of through circular hole, located in the centre of plane rectangular coupon, under constant external load. The first indicator is the notch mouth opening displacement. In-plane displacement component directed along the notch line as measured in the notch top serves as the second damage indicator. Both parameters follow from direct physical measurements by counting interference fringes, which are visualized on the base of electronic speckle-pattern interferometry. Damage indicator values are obtained for array of specimens with different damage levels. Dependencies of both parameters from loading cycle number are constructed. Theoretical background essential for quantitative analysis of damage accumulation process proceeding from experimental data, which represent evolution of damage indicators caused by loading cycle number increase, is presented. The approach developed is implemented to a quantitative description of damage accumulation process related to cyclic loading of thin rectangular plates with central through hole. Each plate is made from orthotropic composite material. Specimens under study, which are manufactured from layers with three different angular orientations, are tested under fatigue loading with stress range 262.5 MPa and stress ratio –6.0. The point corresponding to the specimen with maximum cycle number, for which damage indicator values are obtained, is decided as conventional limiting case responsible for explicit form of damage accumulation function. Chosen value is equal to 150,000 cycles that comprises 41% of average lifetime of tested specimens. There are no evidences of any delamination inherent in all investigated specimens. Damage accumulation function is constructed in an explicit form for prescribed cycle range. It is established that both indicators provide the same results. Data obtained show that damage accumulation rate is constant for investigated loading cycle range. Accordingly to currently adopted opinion, revealed character of damage accumulation is related to the first stage of the process considered. It is shown that a decrease in the value of deformation response to artificial notch inserting, which occurs after only 1000 cycles applying, is produced by relaxation of residual stress component directed along external force acting line.

About the Authors

S. I. Eleonsky
N. E. Zhukovsky Central Aero-Hydrodynamics Institute
Russian Federation

Svyatoslav I. Eleonsky,

1, ul. Zhukovskogo, Zhukovsky, 140180.



P. N. Gusev,
Public Joint-Stock Company «Yakovlev»
Russian Federation

Pavel N. Gusev,

68, Leningradsky prosp., Moscow, 125315.



A. G. Kalinin
N. E. Zhukovsky Central Aero-Hydrodynamics Institute
Russian Federation

Alexander G. Kalinin,

1, ul. Zhukovskogo, Zhukovsky, 140180.



V. S. Pisarev
N. E. Zhukovsky Central Aero-Hydrodynamics Institute
Russian Federation

Vladimir S. Pisarev,

1, ul. Zhukovskogo, Zhukovsky, 140180.



References

1. Golovan V. I., Grishin V. I., Dzyuba A. S., et al. Design, numerical analysis and static tests of metallic-composite structures. — Moscow: Tekhnosfera, 2022. — 408 p. [in Russian].

2. Talreja R., Singh C. V. Damage and failure of composite materials. — Cambridge University Press, 2012. — 304 p.

3. Alderliesten R. C. Critical review on the assessment of fatigue and fracture in composite materials and structures / Eng. Fail. Anal. 2013. Vol. 35. P. 370 – 379. DOI: 10.1016/j.engfailanal.2013.03.022

4. Ma D., Verleysen P., Chandran S., et al. A modified peridynamic method to model the fracture behaviour of nanocomposites / Eng. Fract. Mech. 2021. Vol. 247. 107614. DOI: 10.1016/j.engfracmech.2021.107614

5. Li Xi, Kupski J., Teixeira S., et al. Unfolding the early fatigue damage process for CFRP cross-ply laminates / Int. J. Fatigue. 2020. Vol. 140. 105820. DOI: 10.1016/j.ijfatigue.2020.105820

6. Reifsnider K. L., Jamison R. Fracture of fatigue-loaded composite laminates / Int. J. Fatigue. 1982. Vol. 4. No. 4. P. 187 – 197. DOI: 10.1016/0142-1123(82)90001-9

7. Pakdel H., Mohammadi B. Stiffness degradation of composite laminates due to matrix cracking and induced delamination during tension-tension fatigue / Eng. Fract. Mech. 2019. Vol. 216. 106489. DOI: 10.1016/j.engfracmech.2019. 106489

8. Glud J. A., Dulieu-Barton J. M., Thomsen O. T., Overgaard L. C. T. Fatigue damage evolution in GFRP laminates with constrained off-axis plies / Compos. A Appl. Sci. Manuf. 2017. Vol. 95. P. 359 – 369. DOI: 10.1016/j.compositesa.2017.02.005

9. Pakdel H., Mohammadi B. Characteristic damage state of symmetric laminates subject to uniaxial monotonic-fatigue loading / Eng. Fract. Mech. 2018. Vol. 199. P. 86 – 100. DOI: 10.1016/j.engfracmech.2018.05.007

10. Saeedifar M., Hosseini H. The Effect of Interlaminar and Intralaminar Damage Mechanisms on the Quasi-Static Indentation Strength of Composite Laminates / Appl. Compos. Mater. 2023. Vol. 30. P. 871 – 866. DOI: 10.1007/s10443-023-10123-x

11. Dimitrienko Yu. I., Sokolov A. P. Multi-scale modeling of elastic composite materials / Matem. Model. 2003. Vol. 24. No. 5. P. 3 – 20 [in Russian].

12. Moure M. M., Sanchez-Saez S., Barbero E., Barbero E. J. Analysis of damage localization in composite laminates using a discrete damage model / Composites Part B. 2014. Vol. 66. P. 224 – 232. DOI: 10.1016/j.compositesb.2014.05.015

13. Dolgikh D. A., Tashkinov M. A. Investigation of damage accumulation and delamination growth in polymer composite materials proceeding from two-level failure models / PNRPU Mechanics Bulletin. 2020. No. 4. P. 74 – 85 [in Russian]. DOI: 10.15593/perm.mech/2020.4.07

14. Orifici A. C., Herszberg I., Thomson R. S. Review of methodologies for composite material modelling incorporating failure / Composite Structures. 2008. Vol. 86. No. 1 – 3. P. 194 – 210. DOI: 10.1016/j.compstruct.2008.03.007

15. Liu P., Xing L., Zheng J. Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method / Composites Part B. 2014. Vol. 56. P. 54 – 61. DOI: 10.1016/j.compositesb.2013.08.017

16. Maimi P., Camanho P. P., Mayugo J. A., Davila C. G. A continuum damage model for composite laminates: Part I — Constitutive model / Mechanics of Materials. 2007. Vol. 39. No. 10. P. 897 – 908. DOI: 10.1016/j.mechmat.2007.03.005

17. Maimi P., Camanho P. P., Mayugo J. A., Davila C. G. A continuum damage model for composite laminates: Part II — Computational implementation and validation / Mechanics of Materials. 2007. Vol. 39. No. 10. P. 909 – 919. DOI: 10.1016/j.mechmat.2007.03.006

18. Liu P. F., Zheng J. Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics / Materials Science and Engineering: A. 2008. Vol. 485. No. 1 – 2. P. 711 – 717. DOI: 10.1016/j.msea.2008.02.023

19. Barbero E. J., Cortes D. H. A mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites / Composites Part B. 2010. Vol. 41. No. 2. P. 124 – 132. DOI: 10.1016/j.compositesb.2009.10.001

20. Swindeman M. J., Iarve E. V., Brockman R. A., et al. Strength Prediction in Open Hole Composite Laminates by Using Discrete Damage Modeling / AIAA Journal. 2013. Vol. 51. P. 936 – 945. DOI: 10.2514/1.j051773

21. Yoshiaki Kawagoe, Kenji Kawai, Yuta Kumagai, et al. Multiscale modeling of process-induced residual deformation on carbon-fiber-reinforced plastic laminate from quantum calculation to laminate scale finite-element analysis / Mechanics of Materials. 2022. Vol. 170. 104332. DOI: 10.1016/j.mechmat.2022.104332

22. Wang J., Qin T., Rao N., et al. Three-dimensional progressive damage and failure analysis of double-lap composite bolted joints under quasi-static tensile loading / Compos. Struct. 2022. Vol. 285. 115227. DOI: 10.1016/j.compstruct.2022.115227

23. Jebeli M. A., Heidari-Rarani M. Development of Abaqus WCM plugin for progressive failure analysis of type IV composite pressure vessels based on Puck failure criterion / Eng. Fail. Anal. 2022. Vol. 131. 105851. DOI: 10.1016/j.engfailanal.2021.105851

24. Costa Damião, Gonilha José A., Silvestre Nuno. Calibration and validation of a 3D homogenised model to simulate the damage progression of pultruded GFRP composites / Engineering Failure Analysis. 2023. Vol. 149. 107261. DOI: 10.1016/j.engfailanal.2023.107261

25. Xi Li, Rinze Benedictus, Dimitrios Zarouchas. Analysis of Stochastic Matrix Crack Evolution in CFRP Cross-Ply Laminates under Fatigue Loading / Engineering Failure Analysis. 2023. Vol. 150. 107277. DOI: 10.1016/j.engfailanal.2023.107277

26. Li X., Benedictus R., Zarouchas D. Damage accumulation analysis of CFRP cross-ply laminates under different tensile loading rates / Composites Part C. 2020. Vol. 1. 100005. DOI: 10.1016/j.jcomc.2020.100005

27. Li X., Benedictus R., Zarouchas D. Early Fatigue Damage Accumulation of CFRP Cross-Ply Laminates Considering Size and Stress Level Effects / Int. J. Fatigue. 2022. Vol. 159. 106811. DOI: 10.1016/j.ijfatigue.2022.106811

28. Koley S., Mohite P. M., Upadhyay C. S. A micromechanical study and uncertainty quantification for effective properties of unidirectional fibre reinforced composites / Compos. Struct. 2019. Vol. 225. 111141. DOI: 10.1016/j.compstruct.2019.111141

29. Berthelot J.-M., Le Corre J.-F. Statistical analysis of the progression of transverse cracking and delamination in cross-ply laminates / Composite Science and Technology. 2020. Vol. 60. No. 14. P. 2659 – 2669. DOI: 10.1016/S0266-3538(00)00140-8

30. Ma D., Campos Amico S., Giglio M., Manes A. Effect of fibre bundle uncertainty on the tensile and shear behaviour of plain-woven composites / Compos. Struct. 2021. Vol. 259. 113440. DOI: 10.1016/j.compstruct.2020.113440

31. Gao J., Yuan Y. Probabilistic modeling of stiffness degradation for fiber reinforced polymer under fatigue loading / Eng. Fail. Anal. 2020. Vol. 116. 104733. DOI: 10.1016/j.engfailanal.2020.104733

32. Gao J., Zhu P., Yuan Y., Wu Z., Xu R. Strength and stiffness degradation modeling and fatigue life prediction of composite materials based on a unified fatigue damage model / Eng. Fail. Anal. 2022. Vol. 137. 106290. DOI: 10.1016/j.engfailanal.2022.106290

33. Gabriel V. R. P., Loukil M. S., Varna J. Intralaminar cracking during cyclic loading in laminates with distributed failure stress in 90-plies / Int. J. Fatigue. 2022. Vol. 161. 106909. DOI: 10.1016/j.ijfatigue.2022.106909

34. Matvienko Yu. G., Pisarev V. S., Eleonsky S. I. Evolution of fracture mechanics parameters relevant to narrow notch increment as a measure of fatigue damage accumulation / International Journal of Fatigue. 2021. Vol. 149. 106310. DOI: 10.1016/j.ijfatigue.2021.106310

35. Matvienko Yu. G., Pisarev V. S., Eleonsky S. I. Low-cycle fatigue damage accumulation near the cold-expanded hole by crack compliance data / International Journal of Fatigue. 2022. Vol. 155. 106590. DOI: 10.1016/j.ijfatigue.2021.106590

36. Dzuba A. S., Eleonsky S. I., Pisarev V. S., Yashutin A. G. Influence of artificial notch length in composite material on damage indicator values / Technical Physics. 2023. Vol. 93. No. 3. P. 371 – 379. DOI: 10.21883/JTF.2023.03.54848.272-22

37. Eleonsky S., Kazantsev D., Pisarev V., Statnik E. Influence of plate thickness on the results of residual stresses determination by through hole drilling in orthotropic composites of different fiber orientation / Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.09.072

38. Pisarev V. S., Matvienko Yu. G., Eleonsky S. I., Odintsev I. N. Combining the crack compliance method and speckle interferometry data for determination of stress intensity factors and T-stresses / Engineering Fracture Mechanics. 2017. Vol. 179. P. 348 – 374. DOI: 10.1016/j.engfracmech.2017.04.029

39. Moskvitin V. V. Cyclic loading of structural elements. — Moscow: Nauka, 1981. — 344 p. [in Russian].

40. Movchan A. A. Micromechanical approach to the problem of describing anisotropic scattered damages / Izv. AN SSSR. Mekh. Tv. Tela. 1990. No. 3. P. 115 – 123 [in Russian].

41. Movchan A. A. Mechanics of accumulation of scattered damages in structural elements: Textbook. — Moscow: Izd. MAI, 1996. — 64 p. [in Russian].

42. Murakami S. Continuum Damage Mechanics. — Dordrecht – Heidelberg – London – NY: Springer, 2012. — 402 p. DOI: 10.1007/978-94-007-2666-6

43. Matvienko Yu. G., Pisarev V. S., Eleonsky S. I. Quantitative description of low-cycle fatigue damage accumulation in contact interaction zone by local strain evolution / Frattura ed Integrità Strutturale. 2022. Vol. 16. No. 62. P. 541 – 560. DOI: 10.3221/IGF-ESIS.62.37

44. D’Amore A., Grassia L. Phenomenological approach to the study of hierarchical damage mechanisms in composite materials subjected to fatigue loadings / Compos. Struct. 2017. Vol. 175. P. 1 – 6. DOI: 10.1016/j.compstruct.2017.04.071

45. Dudar’kov Yu. I., Limonin M. V. Determination of the transverse shear stress in layered composite / Indust. Lab. Mater. Diagn. 2020. Vol. 86. No. 2. P. 44 – 53 [in Russian]. DOI: 10.26896/1028-6861-2020-86-2-44-53

46. Polilov A. N., Vlasov D. D., Tatus’ N. A. A refined method for estimating the interlayer shear modulus by correcting the deflection of polymer composite specimens / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 3. P. 57 – 69 [in Russian]. DOI: 10.26896/1028-6861-2023-89-3-57-69

47. Polilov A. N., Vlasov D. D., Tatus’ N. A. Specified criterion for delamination upon bending of a composite beam / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 10. P. 63 – 73 [in Russian]. DOI: 10.26896/1028-6861-2023-89-10-63-73


Review

For citations:


Eleonsky S.I., Gusev, P.N., Kalinin A.G., Pisarev V.S. Early damage accumulation caused by cyclic loading of composite plate with hole. Industrial laboratory. Diagnostics of materials. 2025;91(4):51-66. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-4-51-66

Views: 130


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)