

Microspherical diamond single crystal indenter as a means of obtaining stress – strain diagrams
https://doi.org/10.26896/1028-6861-2025-91-4-78-84
Abstract
Obtaining a stress – strain diagram using tensile machines involves testing a large volume specimen. An alternative to such tests is the automated ball indentation test (ABI test — automatic ball indentation), which is designed to determine the stress-strain curves of metallic materials and structural elements. The purpose of this work is to study the applicability of the technique, which is developed for the obtaining of the stress – strain diagram using large spherical indenters (diameter 250 – 1500 μm), to work with a microspherical indenter with a diameter of 5 μm. The use of small diameter spherical indenters allows the study of small sized samples of material from which it is not possible to produce samples for a standard uniaxial tensile experiment. It can be applied to study individual phases of heterogeneous materials, intergrain boundaries, as well as thin films, coatings and near-surface layers of the sample. In this work, the shape of the obtained imprints on the surface of the studied samples was studied both by non-contact method — by means of confocal optical 3D profilometry, and by means of contact method — atomic force microscopy. The non-contact method, as having a higher speed, was used to reveal the grain sizes of alloys, the contact method — to measure the diameter of imprints — due to its higher lateral resolution. A series of experiments were carried out on tensile testing of alloys on a universal testing machine and on indentation of specimens made of the same alloys. The values of elastic moduli and time resistances of alloys V95, VT1 and VT6 were obtained, which coincide within the error limits in the results of two different experiments. In this study, stress – strain diagrams were experimentally plotted using tool indentation and residual indentation geometry analysis when a spherical tip made of diamond single crystal with a small radius of curvature (2.5 μm) was used.
About the Authors
A. S. KushnerevaRussian Federation
Anastasia S. Kushnereva,
9, Institutskiy per., Dolgoprudny, Moscow oblast’, 141701.
G. Kh. Sultanova
Russian Federation
Gulnaz Kh. Sultanova,
9, Institutskiy per., Dolgoprudny, Moscow oblast’, 141701;
7a, Tsentralnaya ul., Troitsk, Moscow, 108840.
A. S. Useinov
Russian Federation
Alexey S. Useinov,
9, Institutskiy per., Dolgoprudny, Moscow oblast’, 141701;
14, Kaluzhskoe shosse, Troitsk, Moscow, 108840.
A. A. Rusakov
Russian Federation
Alexey A. Rusakov,
7a, Tsentralnaya ul., Troitsk, Moscow, 108840.
V. V. Solovyev
Russian Federation
Vladimir V. Solovyev,
7a, Tsentralnaya ul., Troitsk, Moscow, 108840.
References
1. Kalpakoglou T., Yiatros S. Metal foams: A review for mechanical properties under tensile and shear stress / Front. Mater. 2022. Vol. 9. P. 998673. DOI: 10.3389/fmats.2022.998673
2. Makhutov N. A., Gadenin M. M. Study of the generalized curves of the static and cyclic deformation, damage and fracture / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 5. P. 46 – 55 [in Russian]. DOI: 10.26896/1028-6861-2023-89-5-46-55
3. Tu K., Wu J., Wang Y., et al. Uniaxial compressive stress – strain relation of recycled coarse aggregate concrete with different carbonation depths / Materials. 2022. Vol. 15. No. 15. P. 5429. DOI: 10.3390/ma15155429
4. Rizwee M., Kumar D. Contribution of geometrical infill pattern on mechanical behaviour of 3D manufactured polylactic acid specimen: Experimental and numerical analysis / Prog. Rubber Plast. Recycl. Technol. 2024. 14777606241281614. DOI: 10.1177/14777606241281614
5. Golovin Y. I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers and films (review) / Solid State Phys. 2008. Vol. 50. No. 12. P. 2113 – 2142 [in Russian].
6. de Santana E. C., Misiolek W. Z., Costa A. L. M. Numerical study on the surface morphology evolution and hardness during the spherical indentation of copper with plastic behavior described by different stress – strain relationships / Int. J. Solids Struct. 2022. Vol. 252. P. 111817. DOI: 10.1016/j.ijsolstr.2022.111817
7. Yu F., Fang J., Omacht D., et al. A new instrumented spherical indentation test methodology to determine fracture toughness of high strength steels / Theor. Appl. Fract. Mech. 2023. Vol. 124. P. 103744. DOI: 10.1016/j.tafmec.2022.103744
8. Matyunin V. M., Marchenkov A. Yu., Volkov P. V., et al. Conversion of the kinetic indentation diagrams of ball indenter into stress – strain curves for metallic structural materials / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 2. P. 54 – 63 [in Russian]. DOI: 10.26896/1028-6861-2022-88-2-54-63
9. Rogozhkin S. V., Klauz A. V., Bogachev A. A., et al. Atom-Probe Tomography Study of the Influence of Fe Ion Irradiation at 500°C on the Nanostructure of Oxide Dispersion-Strengthened Steels / Phys. At. Nucl. 2023. Vol. 86. No. 9. P. 1975 – 1984. DOI: 10.1134/S1063778823090181
10. Moschetti M., Burr P. A., Obbard E., et al. Design considerations for high entropy alloys in advanced nuclear applications / J. Nucl. Mater. 2022. Vol. 567. P. 153814. DOI: 10.1016/j.jnucmat.2022.153814
11. Nikitin A. A., Rogozhkin S. V., Ogorodnikova O. V., et al. Microstructure and Mechanical Properties of W – 10Cr – 0.5Y Alloy under Heavy Ion Irradiation / Phys. At. Nucl. 2023. Vol. 86. No. 12. P. 2618 – 2627. DOI: 10.1134/s1063778823120050
12. Izaguirre I., Roldán M., de Prado J., et al. S/TEM examination and nanomechanical response of W-Eurofer joints brazed with Cu interlayers / Nucl. Mater. Energy. 2022. Vol. 31. P. 101155. DOI: 10.1016/j.nme.2022.101155
13. Yu F., Fang J., Omacht D., et al. A new instrumented spherical indentation test methodology to determine fracture toughness of high strength steels / Theor. Appl. Fract. Mech. 2022. Vol. 124. P. 103744. DOI: 10.1016/j.tafmec.2022.103744.
14. Prakash R. V., Chow S. S. An evaluation of stress – strain property prediction by Automated Ball Indentation (ABI) testing / J. Test. Eval. 2007. Vol. 35. No. 3. P. 221 – 232. DOI: 12.1520/JTE100180
15. Lin H., Shao L., Lv L., Bao J. Investigation of the Evolution of Plastic Anisotropy and Pile-Up of Al Single Crystal in Nanoindentation Using Different Crystal Plasticity Models / Mater. Trans. 2024. Vol. 65. No. 5. P. 494 – 501. DOI: 10.2320/matertrans.MT-M2023216
16. Kim J. H., Kwon O. M., Lee J., et al. Equivalent-Volume Model: Estimating Contact Morphology of Spherical Indentation for Metallic Materials / Met. Mater. Int. 2024. Vol. 30. No. 3. P. 714 – 725. DOI: 10.1007/s12540-023-01535-2
17. Kumar C. S., Sharma A. K., Zgalat-Lozynskyi O., Ragulya A. V. On mechanical and tribological behaviour of microwave sintered TiN – 5 wt % Al2O3 – 5 wt % Y2O3 nanocomposite / Powder Technol. 2024. P. 120196. DOI: 10.1016/j.mtcomm.2022.103218
18. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / J. Mater. Res. 1992. Vol. 7. No. 6. P. 1564 – 1583.
19. Chang C., Garrido M., Ruiz-Hervias J., et al. Representative stress – strain curve by spherical indentation on elastic-plastic materials / Adv. Mater. Sci. Eng. 2018. Vol. 2018. P. 1 – 9. DOI: 10.1155/2018/8316384
20. Lin D., Shreiber D., Dimitriadis E., Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: Numerical and experimental validation of hyperelastic models / Biomech. Model. Mechanobiol. 2008. Vol. 8. P. 345 – 358. DOI: 10.1007/s10237-008-0139-9
21. Galanov B., Ivanov S., Kartuzov V. Improved core model of the indentation for the experimental determination of mechanical properties of elastic-plastic materials and its application / Mech. Mater. 2020. Vol. 150. DOI: 10.1016/j.mechmat.2020.103545
22. Wang Q., Niu C., Liu Zh., et al. The hardening effect of deformation twinning based on visco-plastic self consistent model and a multi-scale grain refinement prediction model during machining of titanium alloy / J. Mater. Res. Technol. 2023. Vol. 26. P. 1922 – 1937. DOI: 10.1016/j.jmrt.2023.08.007
Review
For citations:
Kushnereva A.S., Sultanova G.Kh., Useinov A.S., Rusakov A.A., Solovyev V.V. Microspherical diamond single crystal indenter as a means of obtaining stress – strain diagrams. Industrial laboratory. Diagnostics of materials. 2025;91(4):78-84. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-4-78-84