Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the Grain and Dislocation Structure of Nanostructured Mechanically Alloyed Model Carbon Steels Using CMWP-Method

Abstract

Different methods of x-ray diffraction data analysis are compared in a case study of mechanically alloyed powder steels Fe95,5C4,5, Fe90,6Si5C4,4, Fe92,5Cr3C4,5 (Fe - 4.3 at.% (1 wt.%) C alloyed with Si and Cr). It is shown that conventional techniques of x-ray analysis, e.g., Williamson-Hall method, are not suitable for studying the structure of nanostructured steels. The grain and dislocation structures of those materials are studied using CWMP full-pro-file method. The average size of the blocks of coherent scattering, their distribution in size, dislocation density and their characteristics are studied as a function of the type of alloying elements and temperature of annealing. A bimodal grain structure is formed upon annealing of mechanically alloyed steels due to selective growth of grains. The dislocation density and evolution of the dislocation structure upon annealing strongly depend on the type of alloying element.

About the Authors

V. A. Volkov
Физико-технический институт УрО РАН
Russian Federation


I. A. Elkin
Физико-технический институт УрО РАН
Russian Federation


A. A. Chulkina
Физико-технический институт УрО РАН
Russian Federation


References

1. Носкова Н. И. Механизмы деформации и разрушения нанокристаллических материалов / Вестник Тамбовского университета. Серия: Естественные и технические науки. 2013. Т. 18. №4. С.1963 - 1973.

2. Гусев А. И. Нанокристаллические материалы: методы получения и свойства. -Екатеринбург: УрО РАН, 1998. - 115 с.

3. Валиев Р. З., Александров И. В. Объемные наноструктурные металлические материалы. - М.: Академкнига, 2007. - 398 с.

4. Suryanarayana C., Koch C. C. Nanocrystalline materials - Current research and future directions / Hyperfine Interactions. 2000. Vol. 130. N 1 - 4. P. 5 - 44.

5. Huang J. Y., Zhu Y. T., Jiang H., Lowe T. C. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening / Acta Materialia. 2001. Vol. 49. N9. P. 1497 - 1505.

6. Liao X. Z., Huang J. Y., Zhu Y. T., Zhou F., Lavernia E. J. Nanostructures and deformation mechanisms in a cryogenically ball-milled Al -Mg alloy / Philosophical Magazine. 2003. Vol. 83. N 26. P. 3065 -3075.

7. Zhu Y. T., Huang J. Y., Gubicza J., Ungar T., Wang Y. M., Ma E., Valiev R. Z. Nanostructures in Ti processed by severe plastic deformation / Journal of Materials Research. 2003. Vol. 18. N 8. P. 1908 - 1917.

8. Chen Y. Z., Herz A., Li Y. J., Borchers C., Choi P., Raabe D., Kirchheim R. Nanocrystalline Fe - С alloys produced by ball milling of iron and graphite / Acta Materialia. 2013. Vol. 61. P. 3172 - 3185.

9. Ribarik G., Ungar T., Gubicza J. MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions / J. Appl. Crystallogr. 2001. Vol. 34. N 5. P. 669 - 676.

10. Ribarik G., Gubicza J., Ungar T. Correlation between strength and microstructure of ball-milled Al - Mg alloys determined by X-ray diffraction / Mater. Sci. Engin. 2004. Vol. 387. P. 343 - 347.

11. Wilkens M. Theoretical aspects of kinematical X-ray diffraction profiles from crystals containing dislocation distributions. Fundamental As pects of Dislocaton Theory / Nat. Bur. Stand. 1970. Vol. 2. N317. P. 1195- 1221.

12. Krivoglaz M. A. Theory of X-ray and Thermal Neutron Scattering by Real Crystals. - New York: Plenum Press, 1969.

13. Revesz A., Nagy L., Ribarik G., Kovacs Z., Ungar T., Lendvai J. Microstructural evolution in mechanically alloyed nanocrystalline Al-20 at.% Mg alloy / J. Metastable Nanocrystalline Mater. 2005. Vol. 24. P. 149- 152.

14. Ribarik G., Audebrand N., Palancher H., Ungar T., Louer D. Dislocations and crystallite size distributions in ball-milled nanocrystalline fluorides MF2 (M = Ca, Sr, Ba, Cd) determined by X-ray diffraction-line-profile analysis / J. Appl. Crystallogr. 2005. Vol. 38. P. 912 - 926.

15. Balogh L., Ribarik G., Ungar T. Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis / J. Appl. Physics. 2006. Vol. 100. N2. P. 023512-1 -023512-10.

16. Шелехов Е. В., Свиридова Т. А. Программы для рентгеновского анализа поликристаллов / МиТОМ. 2000. N 8. P. 16 - 19.

17. Borbely A., Dragomir I. C., Ribarik G., Ungar T. Computer program Anizc for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals / J. Appl. Crystallogr. 2003. Vol. 36. P. 160 - 162.

18. Новиков И. И. Дефекты кристаллического строения металлов. - М.: Металлургия, 1975. - 208 с.

19. Williamson G. K., Hall W. H. X-Ray line broadening from filed aluminum and wolfram / Acta Metallurgica. 1953. Vol. 1. P. 22 - 31.

20. Иверонова В. И., Ревкевич Г. П. Теория рассеяния рентгеновских лучей. - М.: МГУ, 1972. - 246 с.

21. Ungar T., Gubicza J., Ribarik G., Borbely A. Cristallite size-distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals / J. Appl. Crystallogr. 2001. Vol. 34. P. 298 - 310.

22. Ribarik G., Ungar T. Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis / Mater. Sci. Engin. 2010. Vol. 528. P. 112 - 121.

23. Kerber M., Schafler E., Zehetbauer M. Processing and evaluation of X-Ray line profiles measured from nanostructured materials produced by severe plastic deformation / Rev. Adv. Mater. Sci. 2005. Vol. 10. P. 427 - 433.

24. Valiev R. Z., Kozlov E. V., Ivanov Yu. F., Lian J., Nazarov A. A., Baudelet B. Deformation behaviour of ultra-fined-grained copper / Acta Metallurgica Materialia. 1994. Vol. 42. N 7. P. 2467 - 2476.

25. Ungar T., Tichy G. The Effect of Dislocation Contrast on X-Ray Line Profiles in Untextured Polycrystals / Physica status solidi (a). 1999. Vol. 171. N2. P. 425 -434.

26. Малыгин Г. А. Влияние дисперсии распределения зерен по размерам на прочность и пластичность нанокристаллических металлов / Физика твердого тела. 2008. Т. 50. N 6. P. 1013 - 1017.

27. Andrievski R. A. Review of thermal stability of nanomaterials / J. Mater. Sci. 2014. Vol. 49. P. 1449 - 1460.

28. Michels A., Krill C. E., Ehrhardt H., Birringer R., Wu T. D. Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials / Acta Materialia. 1999. Vol. 47. N7. P. 2143 -2152.


Review

For citations:


Volkov V.A., Elkin I.A., Chulkina A.A. Study of the Grain and Dislocation Structure of Nanostructured Mechanically Alloyed Model Carbon Steels Using CMWP-Method. Industrial laboratory. Diagnostics of materials. 2016;82(5):33-38. (In Russ.)

Views: 412


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)