Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Comparative evaluation of gas chromatographic techniques for determination of hydrogen used for isopropyl alcohol synthesis

https://doi.org/10.26896/1028-6861-2025-91-6-5-10

Abstract

During the synthesis of isopropyl alcohol by the acetone hydrogenation reaction, it is necessary to control the content of impurities in the hydrogen used, since its purity determines the quality of the product, and impurities of CO and CO2 are catalytic poisons for this reaction. At the «Omsky Kauchuk» plant, the purity of hydrogen is determined by gas chromatography using two different chromatographs — laboratory and flow. A comparison of the results of the parallel determination of hydrogen purity revealed a discrepancy of about 10 % wt., while the flow chromatograph did not detect impurities of CO and CO2, the content of which, according to the laboratory chromatograph, was 0.10 and 0.016 % wt., respectively; the nitrogen content was significantly underestimated. Based on the conducted research, it was found that the sorbent of the nozzle column of the flow chromatograph is not suitable for the determination of CO2 that distorts the results of hydrogen determination. In this regard, other options for nozzle columns with a CO2-selective sorbent are proposed for use with a flow chromatograph, and it is also necessary to periodically warm up the column to remove volatile contaminants.

About the Authors

V. O. Vetrenko
F. M. Dostoevsky Omsk State University, 55a, ul. Mira, Omsk, 644047, Russia; Omsky Kauchuk JSC, 30, Gubkina prosp., Omsk, 644035, Russia
Russian Federation

Valeriya O. Vetrenko



O. A. Golovanova
F. M. Dostoevsky Omsk State University, 55a, ul. Mira, Omsk, 644047, Russia
Russian Federation

Olga A. Golovanova



N. I. Buchatskaya
Omsky Kauchuk JSC, 30, Gubkina prosp., Omsk, 644035, Russia
Russian Federation

Nadezhda I. Buchatskaya



References

1. Alikhanov B. B., Kadyrov A. A. Hydrogen as a main energy carrier of the XXI century: Production and application / Universum: Technical sciences. 2021. No. 5(86). P. 57 – 58 [in Russian].

2. USSR Inventor’s certificate No. 1051055 A1, IPC C07C 31/10, C07C 29/136. Method of isopropyl alcohol production / Ryleev G. I., Nagrodsky M. I., Pneva E. Ya., et al. No. 2950353. Publ. 30.10.1983 [in Russian].

3. RF Pat. 2575850 C1. IPC C08F 2/18, C08F 2/44, C08F 120/12. Application of a mixture of oxyethylated castor oil and isopropyl alcohol as a stabilizer of polymer suspensions / Gritskova I. A., Milushkova E. V., Belenko E. V., et al. No. 2015107673/04. Publ. 20.02.2016 [in Russian].

4. Nebritova O. A., Demkin P. P., Morozov A. N. Acetone, ethanol and isopropanol as a set of biomarkers in the exhaled air of patients with type I diabetes / Bull. Bauman Moscow State Technical Univ. The Natural Sciences Series. 2023. No. 6(111). P. 39 – 54 [in Russian]. DOI: 10.18698/1812-3368-2023-6-39-54

5. Pavlov O. S., Karsakov S. A., Pavlov D. S. Technology of production of isopropyl alcohol on a sulfocationite catalyst / Izv. Vuzov. Khimiya Khim. Tekhnol. 2007. Vol. 50. No. 4. P. 51 – 54 [in Russian].

6. The official website of Titan Group companies. https://titan- group.ru/press/news/dan-ofitsialnyy-start-proizvodstvu-izopro- panola (accessed 15.05.2024).

7. Lebedev N. N. Chemistry and technology of basic organic and petrochemical synthesis. — Moscow: Khimiya, 1975. P. 6 – 8 [in Russian].

8. Ogorodnikov S. S. (ed.). Handbook of Petrochemist — Leningrad, 1978. — 592 p. [in Russian].

9. Murugan A., Brown A. S. Review of purity analysis methods to ensure the quality of hydrogen in fuel cells / Int. J. Hydrogen Energy. 2015. Vol. 40. No. 11. P. 4219 – 4233. DOI: 10.1016/j.ijhydene.2015.01.041

10. Beurey C., Gozlan B., Carré M., et al. Review and survey of methods for analysis of impurities in hydrogen for fuel cell vehicles according to ISO 14687:2019 / Front. Energy Res. 2021. Vol. 8. 615149. DOI: 10.3389/fenrg.2020.615149

11. ASTM D7653–18. Standard test method for determination of trace gaseous contaminants gas impurities in hydrogen fuel by Fourier transform infrared (FTIR) spectroscopy. DOI: 10.1520/d7653-18

12. ASTM D7892–15. Standard test method for determination of total organic halides, total non-methane hydrocarbons, and formaldehyde in hydrogen fuel by gas chromatography/mass spectrometry. DOI: 10.1520/d7892-15

13. Arrhenius K., Büker O., Fischer A., et al. Development and evaluation of a novel analyser for ISO14687 hydrogen purity analysis / Meas. Sci. Technol. 2020. Vol. 31. 075010. DOI: 10.1088/1361-6501/ab7cf3

14. ASTM D7941/D7941M-23. Standard test method for hydrogen purity analysis using a continuous wave cavity ring-down spectroscopy analyzer. DOI: 10.1520/d7941_d7941m

15. Empa-Move project. https://www.empa.ch/web/move/aktuelle- projekte (accessed 20.05.2024).

16. GOST 3022–80. The state standard of the USSR. Technical hydrogen. Technical specifications. — Moscow: USSR State Committee for Product Quality Management and Standards, 1981. — 25 p. [in Russian].

17. GOST R 51673–2000. Pure gaseous hydrogen. Technical specifications. — Moscow: Gosstandart, 2002. — 8 p. [in Russian].

18. Techical Specifications TU 2114-016-78538315–2008. High purity hydrogen. — Moscow: Scientific and production company «Nauka», 2008. — 13 p. [in Russian].

19. Articles on technical pure gases. https://kriogen.ru/stati (accessed 20.05.2024).

20. Vokuev M. F., Braun A. V., Baygildiev T. M., et al. Determination of methylphosphonic acid and alkyl methylphosphonic acid esters in soils by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 1. P. 25 – 33 [in Russian]. DOI: 10.26896/1028-6861-2022-88-1-i-25-33

21. Alekseeva T. Yu., Karpov Yu. A., Dalnova O. A., et al. Current State and Problems of Analytical Control of Waste Automotive Catalysts (Review) / Industr. Lab. Mater. Diagn. 2017. Vol. 83. No. 11. P. 5 – 14 [in Russian]. DOI: 10.26896/1028-6861-2017-83-11-5-14

22. Ponomarenko S. A., Shimkin A. A. Chromatographic Methods of Analysis: Possibility of Using in Aviation Industry (Review) / Industr. Lab. Mater. Diagn. 2017. Vol. 83. No. 4. P. 5 – 13 [in Russian].

23. Zenkevich I. G., Prokof’ev D. V. The Main Source and Compensation of the Random Component of Errors in Determination of the Areas of Chromatographic Peaks / Industr. Lab. Mater. Diagn. 2016. Vol. 82. No. 11. P. 5 – 10 [in Russian].

24. GOST 24975.4–89. Ethylene. Method for determination of ammonia. — Moscow: USSR State Committee for Product Quality Management and Standards, 1991. — 5 p. [in Russian].


Review

For citations:


Vetrenko V.O., Golovanova O.A., Buchatskaya N.I. Comparative evaluation of gas chromatographic techniques for determination of hydrogen used for isopropyl alcohol synthesis. Industrial laboratory. Diagnostics of materials. 2025;91(6):5-10. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-6-5-10

Views: 135


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)