

Temperature control by digital thermographic camera of aluminum sheets under high-dense electric pulsing
https://doi.org/10.26896/1028-6861-2025-91-6-28-37
Abstract
One of the main factors hindering the application of high-dense electropulsing technology is the lack of commercial devices to record the temperature of wrought semi-products and billets under conditions of ultrahigh heating rate and ultrashort annealing time. The paper presents the data on the control of temperature and duration of the stages of heating and cooling of rectangular plates with a thickness of 1 mm and gauge length of up to 92 mm out of cold- and cryo-rolled sheets of the 1560 (Al – 6Mg – 0.6Mn) and 1965 (Al – 8Zn – 2Mg – 2Cu – 0.1Zr – 0.2Sc – 0.1Mn) alloys during a single exposure to millisecond pulses with a current density of up to 90 kA/mm2. The temperature changes were recorded using digital thermographic camera THT-600 with a frame rate of 50 Hz. It was found that the temperature measured in the central sample volumes coincides well with the calculated one under heating up to 200°C and weakly depends on their length. The temperature distributions over the width and length of the plates are heterogeneous, and the temperature gradient decreases with their length. The detection of volumes with an increased temperature along the longitudinal edges of the samples was originated by the elecropulsing skin-effect, and those with a reduced temperature near the boundaries of the treated zone were due to intense heat outflow through capture-current traps. The results can be used to improve methods of on-line temperature control of aluminum semiproducts under electropulsing treatment.
About the Authors
A. Kh. ValeevaRussian Federation
Aigul Kh. Valeeva
I. Sh. Valeev
Russian Federation
Irshat Sh. Valeev
M. V. Markushev
Russian Federation
Mikhail V. Markushev
References
1. Liang C. L., Lin K. L. The microstructure and property variations of metals induced by electric current treatment: A review / Mater. Charact. 2018. Vol. 145. P. 545 – 555. DOI: 10.1016/j.matchar.2018.08.058
2. Sheng Y., Hua Y., Wang X., et al. Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties / Materials. 2018. Vol. 11. No. 2. P. 185. DOI: 10.3390/ma11020185
3. Samuel E., Bhowmik A., Qin R. Accelerated spheroidization induced by high intensity electric pulse in a severely deformed eutectoid steel / J. Mater. Res. 2010. Vol. 25. P. 1020 – 1024. DOI: 10.1557/jmr.2010.0140
4. Markushev M. V., Ilyasov R. R., Krymskiy S. V., et al. Structure and strength of fine-grain copper after cryorolling and single electropulsing of different capacity / Lett. Mater. 2021. Vol. 11. No. 4. P. 491 – 496. DOI: 10.22226/2410-3535-2021-4-491-496
5. Markushev M., Valeev I., Valeeva A., et al. Effect of electric pulsing on the structure, texture and hardness of cryorolled fine-grain copper / Facta Universitatis. Series: Mechanical Engineering. 2022. On-line first. DOI: 10.22190/fume220127030m
6. Markushev M., Avtokratova E., Ilyasov R., et al. Effect of High-Dense Electropulsing on Structure and Strength of Cryorolled Metals / Russian Metallurgy (Metally). 2023. Vol. 2023. No. 11. P. 1690 – 1695. DOI: 10.1134/s0036029523110198
7. Conrad H. Effects of electric current on solid state phase transformations in metals / Mater. Sci. Eng. A. 2000. Vol. 287. P. 227 – 237.
8. Knoepfel H. Pulsed High Magnetic Fields. — Amsterdam: North-Holland, 1970. — 392 p.
9. Markushev M. V., Valeev I. Sh., Avtokratova E. V., et al. Effect of high-dense electropulsing with different energies on the structure and strength of nickel cryorolled to different strains / Lett. Mater. 2023. Vol. 13. No. 2. P. 126 – 131. DOI: 10.22226/2410-3535-2023-2-126-131
10. Wang X., Dai W., Wang R., et al. Enhanced phase transformation and variant selection by electric current pulses in a Cu – Zn alloy / J. Mater. Res. 2014. Vol. 29. P. 975 – 980. DOI: 10.1557/jmr.2014.76
11. Golovin Yu. I., Turin A. I., Golovin D. Yu., Samodurov A. A. New methods of thermographic control using multi-scale analysis of non-stationary thermal fields / Industr. Lab. Mater. Diagn. 2018. Vol. 84. No. 6. P. 23 – 33 [in Russian]. DOI: 10.26896/1028-6861-2018-84-6-23-31
12. Vashchenko P. V., Boldova S. S., Labusov V. A. High-speed spectral pyrometer based on a «Kolibri-2» spectrometer / Industr. Lab. Mater. Diagn. 2019. Vol. 85. No. 1(II). P. 122 – 125 [in Russian]. DOI: 10.26896/1028-6861-2019-85-1-ii-122-125
13. Xiao H., Zhang K., Shi C., et al. Influence of electropulsing treatment combined with pre-deformation on ageing behavior and mechanical properties of 5A90 Al – Li alloy / J. Alloys Compd. 2019. Vol. 784. P. 1234 – 1247. DOI: 10.1016/j.jallcom.2019.01.103
14. Xu H., Zhou Y., Zou Y.-J., et al. Effect of Pulsed Current on the Tensile Deformation Behavior and Microstructure Evolution of AZ80 Magnesium Alloy / Materials. 2020. Vol. 13. 4840. DOI: 10.3390/ma13214840
15. Song Y., Wang Z., Yu Y., et al. Fatigue life improvement of TC11 titanium alloy by novel electroshock treatment / Mater. Design. 2022. Vol. 221. 110902. DOI: 10.1016/j.matdes.2022.110902
16. Kim M., Lee S., Yu J., et al. Enhanced kinetics of microstructural evolution in Ti – 6Al – 4V through electropulsing treatment / J. Mater. Res. Tech. 2023. Vol. 26. P. 8500 – 8508. DOI: 10.1016/j.jmrt.2023.09.170
17. Lee M., Yu J., Bae M., et al. Accelerated recrystallization behavior of commercially pure titanium subjected to an alternating-current electropulse / J. Mater. Res. Tech. 2021. Vol. 15. P. 5706 – 5711. DOI: 10.1016/j.jmrt.2021.11.045
18. Oh S., Yu J., Cheon S., et al. Anisotropic microstructural evolutions of extruded ZK60 Mg alloy subjected to electropulsing treatment / J. Mater. Res. Technol. 2023. Vol. 26. P. 3322 – 3331. DOI: 10.1016/j.jmrt.2023.08.103
19. Belousov Yu. I., Postnikov E. S. Infrared photonics. Part II. Features of registration and analysis of thermal fields. Study guide. — St. Petersburg: ITMO, 2019. — 101 p. [in Russian].
20. Butkevich G. V., Degtyar V. G., Slivinskaya A. G. Exercise book on electrical apparatus. — Moscow: Vysshaya shkola, 1977. — 199 p. [in Russian].
21. Grimm T. J., Mears L. M. Skin effects in electrically assisted manufacturing / Manuf. Lett. 2022. Vol. 34. P. 67 – 70. DOI: 10.1016/j.mfglet.2022.09.006
22. Liu J., Jia D., Fu Y., et al. Electroplasticity effects: From mechanism to application / Int. J. Adv. Manuf. Tech. 2024. Vol. 131. P. 3267 – 3286. DOI: 10.1007/s00170-023-12072-y
23. Zhou L., Liu W., Li S., et al. Dynamic simulation of rail potential considering rail skin effect / Int. J. Electr. Power. Energy. Syst. 2023. Vol. 153. 109340. DOI: 10.1016/j.ijepes.2023.109340
Review
For citations:
Valeeva A.Kh., Valeev I.Sh., Markushev M.V. Temperature control by digital thermographic camera of aluminum sheets under high-dense electric pulsing. Industrial laboratory. Diagnostics of materials. 2025;91(6):28-37. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-6-28-37