Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the properties of coatings formed from nanostructured composite powders of the Ti/TiO2 system by microplasma spraying

https://doi.org/10.26896/1028-6861-2025-91-6-38-44

Abstract

With increasing operating speeds and contact loads of structural elements, it is necessary to increase the operational life of friction units, which can be ensured by improving the physical and mechanical properties of the contact surfaces. The paper presents the results of investigations of the properties of coatings formed from nanostructured composite powders of the Ti/TiO2 system by microplasma spraying. Experimental data on the synthesis of nanostructured powders based on a titanium matrix reinforced with titanium dioxide nanopowders are presented. PTOM-1 titanium powder with a fraction of less than 90 μm and nanoscale titanium dioxide powder with a fraction of 80 – 200 nm were used as starting materials. Mixtures of starting materials with variable TiO2 content were subjected to preliminary homogenization and subsequent mechanosynthesis. When studying the morphology of the synthesized powders, it was revealed that the shape of the particles is inherited from the matrix powder, and with an increase in the content of the reinforcing component, the surface of the composite powder is more densely reinforced with particles of TiO2 nanopowder. The determination of the fractional composition showed that the maximum volume fraction of particles (62. 5 % wt.) it corresponds to a size of 10 – 40 μm. Scanning electron microscopy of transverse microspheres revealed that there are no through pores in all coatings. With an increase in the titanium dioxide content to 24 %, porosity increases significantly, and there is also a detachment of the coating material from the substrate. A study of the microhardness of the sprayed coatings showed that the hardest coating (on average 985 HV) was obtained by spraying a synthesized powder with a titanium dioxide content of 16 % by weight. The results obtained can be used to extend the life of, for example, titanium alloy ball valves used in autoclaves for the mining industry.

About the Authors

M. E. Goshkoderya
Central Research Institute Of Structural Materials «Prometey» named after I. V. Gorynin of the National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute» — CRISM «Prometey»), 49, ul. Shpalernaya, St. Petersburg, 191015, Russia
Russian Federation

Mikhail E. Goshkoderya



T. I. Bobkova
Central Research Institute Of Structural Materials «Prometey» named after I. V. Gorynin of the National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute» — CRISM «Prometey»), 49, ul. Shpalernaya, St. Petersburg, 191015, Russia
Russian Federation

Tatyana I. Bobkova



N. A. Serdyuk
Central Research Institute Of Structural Materials «Prometey» named after I. V. Gorynin of the National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute» — CRISM «Prometey»), 49, ul. Shpalernaya, St. Petersburg, 191015, Russia
Russian Federation

Nikita A. Serdyuk



M. V. Staritsyn
Central Research Institute Of Structural Materials «Prometey» named after I. V. Gorynin of the National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute» — CRISM «Prometey»), 49, ul. Shpalernaya, St. Petersburg, 191015, Russia
Russian Federation

Mikhail V. Staritsyn 



M. V. Khromenkov
Central Research Institute Of Structural Materials «Prometey» named after I. V. Gorynin of the National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute» — CRISM «Prometey»), 49, ul. Shpalernaya, St. Petersburg, 191015, Russia
Russian Federation

Mikhail V. Khromenkov 



A. A. Kashirina
Central Research Institute Of Structural Materials «Prometey» named after I. V. Gorynin of the National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute» — CRISM «Prometey»), 49, ul. Shpalernaya, St. Petersburg, 191015, Russia
Russian Federation

Anastasiia A. Kashirina



References

1. Illarionov A. G., Popov A. A. Technological and operational properties of titanium alloys: a textbook. — Yekaterinburg: Uralskiy universitet, 2014. — 137 p. [in Russian].

2. Shneerson Ya. M., Lapin A. Yu., Bolobov V. I. Crevice corrosion of titanium in products of high-temperature leaching of gold-bearing sulfide raw materials / Non-Ferrous Metals. 2017. No. 2. P. 81 – 85 [in Russian].

3. Savenok O. V., Gorpinchenko A. N. Features of operation of oil and gas wells under high corrosion aggression / Science. Engineering. Technology. 2022. No. 2. P. 155 – 170 [in Russian].

4. Frantskevich V. S., Paspelau A. V., Romanovsky V. I., et al. The research of the heat exchanger pipes corrosion / Mining Mechanical Engineering and Machine-Building. 2022. No. 3. P. 102 – 109 [in Russian].

5. Lukina E. A., Kollerov M. Yu., Gusev D. E. Study of titanium nickelide based alloys structure influence on corrosion resistance in biological environment / Metallurgist. 2023. No. 11. P. 54 – 65 [in Russian]. DOI: 10.52351/00260827_2023_11_54

6. Gusev B. A., Efimov A. A., Martynov V. V., et al. Accelerated corrosion tests of a contact pair austenitic stainless steel – titanium alloy / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 5. P. 40 – 45 [in Russian]. DOI: 10.26896/1028-6861-2024-90-5-40-45

7. Kashapov O. S., Reshetilo L. P., Naprienko S. A., et al. Effect of oxidation on mechanical properties and surface condition of heat-resistance titanium alloy VT41 / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 2(I). P. 63 – 75 [in Russian]. DOI: 10.26896/1028-6861-2023-89-2-I-63-75

8. Bobkova T. I., Serdyuk N. A., Goshkoderya M. E., Mukhametzyanova L. V. Study of synthesis processes and modes of microplasma spraying of metal-ceramic composite powder of the Ti – TiO2 – TiH2 system for functional coatings / Advances in Chemistry and Chemical Technology. — Moscow: Mendeleyev University of Chemical Technology, 2024. — 133 p. [in Russian].

9. Lukuttsova N. P., Postnikova O. A., Pykin A. A., et al. The effectiveness of the use of nanodispersed titanium dioxide in photocatalysis / Vestnik BGTU im. V. G. Shukhova. 2015. No. 3. P. 54 – 57 [in Russian].

10. Ilina T. Yu. The possibilities of using titanium dioxide in environmental purification. — Kemerovo: KGTU im. T. F. Gorbacheva, 2015. — 290 p. [in Russian].

11. Sypchenko V. S., Nikitenkov N. N., Pozdeeva E. V., et al. Study of the composition and structure of coatings based on titanium dioxide deposited by reactive magnetron sputtering / Letters on Materials. 2017. No. 7(2). P. 117 – 119 [in Russian]. DOI: 10.22226/2410-3535-2017-2-117-119

12. Li Y., Woo Y., Sekar M., et al. Effect of Nano-Titanium Dioxide Contained in Titania-Polyurea Coating on Marina Biofouling and Drag Reduction / Journal of Biomedical Nanotechnology. 2020. Vol. 16. P. 1530 – 1541. DOI: 10.1166/jbn.2020.2980

13. Isagulov A. Z., Kwon S. S., Kulikov V. Yu. Increasing the wear resistance of elements of mining and processing equipment / Ferrous Metallurgy. 2020. No. 6. P. 609 – 613 [in Russian]. DOI: 10.32339/0135-5910-2020-6-609-613

14. Kovalek N. S. Increasing the wear resistance of protective coatings of shut-off valves for nuclear power plants and main pipeline transport / VII International scientific-pract. conf. «Current directions of scientific research: from theory to practice»: Coll. of works. — Cheboksary: Interactive Plus, 2016. P. 197 – 198 [in Russian].

15. Lysenko V. I. Ceramics from titanium dioxide nanopowder: Creation by the SPS method and properties / Nanoindustriya. 2019. Vol. 12. No. 5(91). P. 246 – 249 [in Russian]. DOI: 10.22184/1993-8578.2019.12.5.246.249

16. Gevorkyan E., Rucki M., Kagramanyan A., et al. Composite material for instrumental applications based on micro powder Al2O3 with additives nano-powder SiC / International Journal of Refractory Metals and Hard Materials. 2019. No. 82. P. 336 – 339. DOI: 10.1016/j.ijrmhm.2019.05.010

17. Kovalev A. A., Krasko A. S. Effect of the thermal sputtering parameters on the cohesive strength of functional resistant coatings / Problems of mechanical engineering and machine reliability. 2021. No. 3. P. 31 – 39 [in Russian]. DOI: 10.31857/S0235711921030081

18. Kravchenko I. N., Karelina M. Yu., Zubrilina E. M., et al. Resource-saving technologies for producing functional nanostructured coatings by high-speed application methods / Advanced Engineering Research. 2015. No. 3(82). P. 19 – 27 [in Russian].

19. Borisov Yu., Kislitsa A., Voynarovich S. Microplasma wire spraying / Proc. of the Intern. thermal spray conf. and exposition ITSC 2004 «Thermal Spray Solutions Advances in Technology and Application». — Osaka, 2004. P. 657 – 662.

20. Bobkova T. I., Goshkoderya M. E., Serdyuk N. A., et al. Study of the dependence of the properties of titanium coatings on the technological modes of sputtering on a microplasma installation UGNP-7/225054 / Voprosy Materialovedeniya. 2023. No. 2(114). P. 80 – 86 [in Russian]. DOI: 10.22349/1994-6716-2023-114-2-80-86

21. Bobkova T. I., Goshkoderya V. E., Savich V. V. Features of Creating Functional and Functionally Gradient Coatings with a Unique Set of Properties from Composite Powders with Titanium Matrix / Mettallurgist. 2023. No. 66(11 – 12). P. 1430 – 1435. DOI: 10.1007/s11015-023-01457-9


Review

For citations:


Goshkoderya M.E., Bobkova T.I., Serdyuk N.A., Staritsyn M.V., Khromenkov M.V., Kashirina A.A. Study of the properties of coatings formed from nanostructured composite powders of the Ti/TiO2 system by microplasma spraying. Industrial laboratory. Diagnostics of materials. 2025;91(6):38-44. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-6-38-44

Views: 12


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)