

Estimating the longevity of carbon stripper foils of cyclotron accelerators
https://doi.org/10.26896/1028-6861-2025-91-6-45-53
Abstract
Accelerators of negative hydrogen ions and deuterons are widely used, for example, in the field of medicine. The particle beam is removed from the accelerators by recharging ions as they pass through a thin carbon foil. The paper presents the results of a study of the longevity of stripper foils. Carbon foils with a thickness of 1 – 4 μm obtained on a glass substrate by vacuum arc sputtering of graphite rods were studied. During the experiments, a laboratory setup was used that simulates the effect of a beam of negative hydrogen ions (energy 18 MeV) using an electron beam (energy 10 keV). The samples were irradiated with a stream of electrons, while each sample retained its integrity. Before and after irradiation, the foil surfaces were analyzed using atomic force microscopy. It was found that irradiation changes the morphology of the surface (roughness parameters deteriorate). The method of electrostatic force microscopy revealed a noticeable difference between the irradiated and non-irradiated parts of the foil not only in thickness, but also in electrical conductivity. The obtained results and the developed research method can be used for prompt changes to the foil forming technology to increase their service life.
About the Authors
I. V. GoltyaevRussian Federation
Ivan V. Goltyaev
J. S. Baryshnikov
Russian Federation
Julian S. Baryshnikov
S. V. Grigorenko
Russian Federation
Sergey V. Grigorenko
O. L. Veresov
Russian Federation
Oleg L. Veresov
I. V. Lazarev
Russian Federation
Igor V. Lazarev
I. A. Rodionov
Russian Federation
Ivan A. Rodionov
Z. G. Lyullin
Russian Federation
Zakhar G. Lyullin
D. K. Kostrin
Russian Federation
Dmitrii K. Kostrin
References
1. Zabrodin B. V., Lomasov V. N., Motornyi A. V. Radionuclide imaging methods. — St. Petersburg: SPbGU, 2006. — 87 p. [in Russian].
2. Taskaev S. Yu., Kanygin V. V. Boron-neutron capture therapy. — Novosibirsk: SO RAN, 2016. — 215 p. [in Russian].
3. Ivanov A. A., Smirnov A. N., Taskaev S. Yu., et al. Accelerator neutron source for boron-neutron capture therapy / Usp. Fiz. Nauk. 2022. Vol. 192. No. 8. P. 893 – 912 [in Russian]. DOI: 10.3367/UFNr.2021.02.038940
4. Onishchenko L. M. Cyclotrons / Phys. Elem. Part. At. Nucl. 2008. Vol. 39. No. 6. P. 1843 – 1850 [in Russian].
5. Smirnov V. L. Cyclotron and its modeling / Phys. Elem. Part. At. Nucl. 2021. Vol. 52. No. 5. P. 1158 – 1304 [in Russian].
6. Bogdanov P. V., Vorogushin M. F., Lamzin E. A., et al. Creation of compact cyclotrons SS-18/9, SS-12 and MSS-30/15 for the production of medical radioisotopes / Tech. Phys. 2011. Vol. 81. No. 10. P. 68 – 83 [in Russian].
7. Kazarinov N. Yu., Gulbekyan G. G., Ivanenko I. A. Calculation of the beam output from the cyclotron TR-24 and DC-140 / Phys. Elem. Part. At. Nucl. Lett. 2020. Vol. 17. No. 4. P. 468 – 473 [in Russian].
8. Sharkov B. Yu., Meshkov I. N. Development of physics and technology of charged particle accelerators. — Moscow: RAN, 2021. — 140 p. [in Russian].
9. Korenev S. A., Dyubkov V. S. On recharging foils and their service life in charged particle accelerators / Proc. of the IV Int. Conf. «Laser, plasma research and Technologies». — Moscow: MEPhI, 2018. P. 402 – 403 [in Russian].
10. Hellborg R. Electrostatic Accelerators. — Berlin – Heidelberg: Springer, 2005. — 275 p.
11. Kabiraj D., Ojha S., Abhilash S., et al. Defect-oriented carbon stripper foil development / Nucl. Instrum. Methods Phys. Res., Sect. A. 2004. Vol. 521. No. 1. P. 183 – 186. DOI: 10.1016/j.nima.2003.11.149
12. Jaggi V., Pavan R., Zeisler S. Production of carbon stripper foils for high-power cyclotrons / Nucl. Instrum. Methods Phys. Res., Sect. A. 2006. Vol. 561. No. 1. P. 1 – 3. DOI: 10.1016/j.nima.2005.12.183
13. Miller S. A., Jolivet C. S., Stoner J. O., Jr. New methods for testing cyclotron carbon stripper foils / Nucl. Instrum. Methods Phys. Res., Sect. A. 2008. Vol. 590. Nos. 1 – 3. P. 57 – 65. DOI: 10.1016/j.nima.2008.02.068
14. Saha P., Yoshimoto M., Hotchi H., et al. Measurement of continuous degradation of a stripper foil during ths operation with 300 kW beam power in the 3-GeV RCS of J-PARC / J. Radioanal. Nucl. Chem. 2015. Vol. 305. No. 3. P. 851 – 857. DOI: 10.1007/s10967-015-4023-7
15. Takeda Y., Irie Y., Sugai I., et al. Measurement of lifetimes of thin carbon stripper foils produced by ion-beam sputtering / Vacuum. 2010. Vol. 84. No. 12. P. 1448 – 1451. DOI: 10.1016/j.vacuum.2010.01.050
16. Sugai I., Oyaizu M., Takeda Y., et al. Influence of carbon material and sputtering angle on stripper foil lifetime / Nucl. Instrum. Methods Phys. Res., Sect. A. 2010. Vol. 613. No. 3. P. 448 – 452. DOI: 10.1016/j.nima.2009.10.001
17. Gikal B. N., Gulbekyan G. G., Kazacha V. I., Kamanin D. V. Calculation of the lifetime of carbon recharge targets in intense flows of heavy ions. — Dubna: OIYaI, 2005. — 12 p. [in Russian].
18. Egorova V. A., Zhukovskii M. E., Podolyako S. V., Tarakanov I. A. Mathematical model of proton interaction with matter. — Moscow: IPM, 2017. — 24 p. [in Russian].
19. Artemov A. S., Baigachev Yu. K., Gevorkov A. K., Sidorin A. O. Interaction of H– ions with foil targets of the recharging device of the beam transport channel / Tech. Phys. 1998. Vol. 68. No. 8. P. 102 – 105 [in Russian].
20. Veresov O. L., Grigorenko S. V., Udovichenko S. Yu. Conditions for the formation of an H–/D– beam in a volumetric plasma source with a magnetic filter / Tech. Phys. 2000. Vol. 70. No. 2. P. 95 – 101 [in Russian].
21. Erpalov A. V., Khoroshevsky K. A., Rumyantseva E. A., Gadolina I. V. A method for evaluating the durability of structures under stationary and non-stationary random loads using variational mode decomposition / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 9. P. 63 – 74 [in Russian]. DOI: 10.26896/1028-6861-2024-90-9-63-74
22. Kostrin D. K., Lisenkov A. A., Ramazanov A. N., Semenova A. N. Vacuum arc deposition of metal-like carbide coatings / Russ. Phys. J. 2016. Vol. 59. No. 9/2. P. 240 – 243 [in Russian].
23. Tupik V. A., Potapov A. A., Margolin V. I., Kostrin D. K. Application of arc discharge for deposition of metallic nanoscale films / Non-Ferrous Metals. 2021. No. 6. P. 55 – 59 [in Russian]. DOI: 10.17580/tsm.2021.06.08
24. Lisenkov A. A., Kostrin D. K., Pikus M. I. Vacuum Arc Deposition of Carbon and Carbon-Based Coatings / Solid State Phenom. 2017. Vol. 265. P. 750 – 754. DOI: 10.4028/www.scientific.net/SSP.265.750
25. Kindler B., Hartmann W., Hubner A., et al. Development of carbon foils with a thickness of up to 600 μg/cm2 / Nucl. Instrum. Methods Phys. Res., Sect. A. 2010. Vol. 613. No. 3. P. 425 – 428. DOI: 10.1016/j.nima.2009.09.092
26. Trifonov S. A., Vorob’ev K. S., Kostrin D. K., Martsynukov S. A. Modeling of a multicusp magnetic system of a source of accelerated neutral particles / LETI Trans. on Electr. Eng. and Comp. Sci. 2024. Vol. 17. No. 5. P. 5 – 14 [in Russian]. DOI: 10.32603/2071-8985-2024-17-5-5-14
27. Lee Y., Ji Q., Leung K., Zahir N. Nanobeam production with the multicusp ion source / Rev. Sci. Instrum. 2000. Vol. 71. No. 2. P. 722 – 724. DOI: 10.1063/1.1150273
28. Zhan H., Hu C. Kinetic solutions for electrons in multi-cusp ion source / Appl. Phys. Lett. 2011. Vol. 99. No. 22. P. 221501. DOI: 10.1063/1.3664347
29. Belyaev V. A., Dubrovin M. M., Kosarev P. M., et al. Multicusp Trap as Model of Plasma Neutralizer for ITER Neutral Beam Injector / Fusion Sci. Technol. 2005. Vol. 47. No. 1T. P. 124 – 127. DOI: 10.13182/FST05-A622
30. Ankudinov A. V., Minarskiy A. M. Optimization of measurements of the interaction force vector in atomic force microscopy / Tech. Phys. 2021. Vol. 91. No. 6. P. 1045 – 1058 [in Russian]. DOI: 10.21883/jtf.2021.06.50877.303-20
31. Kapustin R. D., Kirillov A. O., Uvarov V. I., Zakorzhevsky V. V. Investigation of the effect of the morphology of initial powders on the structural and dimensional characteristics of porous ceramic materials based on SiC / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 11. P. 44 – 51 [in Russian]. DOI: 10.26896/1028-6861-2023-89-11-44-51
32. Makhutov N. A. Development of technical diagnostics in academic and industrial laboratories / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 10. P. 52 – 54 [in Russian]. DOI: 10.26896/1028-6861-2023-89-10-52-54
Review
For citations:
Goltyaev I.V., Baryshnikov J.S., Grigorenko S.V., Veresov O.L., Lazarev I.V., Rodionov I.A., Lyullin Z.G., Kostrin D.K. Estimating the longevity of carbon stripper foils of cyclotron accelerators. Industrial laboratory. Diagnostics of materials. 2025;91(6):45-53. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-6-45-53