Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Estimating the longevity of carbon stripper foils of cyclotron accelerators

https://doi.org/10.26896/1028-6861-2025-91-6-45-53

Abstract

Accelerators of negative hydrogen ions and deuterons are widely used, for example, in the field of medicine. The particle beam is removed from the accelerators by recharging ions as they pass through a thin carbon foil. The paper presents the results of a study of the longevity of stripper foils. Carbon foils with a thickness of 1 – 4 μm obtained on a glass substrate by vacuum arc sputtering of graphite rods were studied. During the experiments, a laboratory setup was used that simulates the effect of a beam of negative hydrogen ions (energy 18 MeV) using an electron beam (energy 10 keV). The samples were irradiated with a stream of electrons, while each sample retained its integrity. Before and after irradiation, the foil surfaces were analyzed using atomic force microscopy. It was found that irradiation changes the morphology of the surface (roughness parameters deteriorate). The method of electrostatic force microscopy revealed a noticeable difference between the irradiated and non-irradiated parts of the foil not only in thickness, but also in electrical conductivity. The obtained results and the developed research method can be used for prompt changes to the foil forming technology to increase their service life.

About the Authors

I. V. Goltyaev
St. Petersburg Electrotechnical University «LETI», 5, ul. Professora Popova, St. Petersburg, 197022, Russia; D. V. Efremov Institute of Electrophysical Apparatus, 3, pos. Metallostroy, St. Petersburg, 196641, Russia
Russian Federation

Ivan V. Goltyaev



J. S. Baryshnikov
D. V. Efremov Institute of Electrophysical Apparatus, 3, pos. Metallostroy, St. Petersburg, 196641, Russia
Russian Federation

Julian S. Baryshnikov



S. V. Grigorenko
D. V. Efremov Institute of Electrophysical Apparatus, 3, pos. Metallostroy, St. Petersburg, 196641, Russia
Russian Federation

Sergey V. Grigorenko



O. L. Veresov
D. V. Efremov Institute of Electrophysical Apparatus, 3, pos. Metallostroy, St. Petersburg, 196641, Russia
Russian Federation

Oleg L. Veresov



I. V. Lazarev
D. V. Efremov Institute of Electrophysical Apparatus, 3, pos. Metallostroy, St. Petersburg, 196641, Russia
Russian Federation

Igor V. Lazarev



I. A. Rodionov
D. V. Efremov Institute of Electrophysical Apparatus, 3, pos. Metallostroy, St. Petersburg, 196641, Russia; Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya ul., St. Petersburg, 195251, Russia
Russian Federation

Ivan A. Rodionov



Z. G. Lyullin
St. Petersburg Electrotechnical University «LETI», 5, ul. Professora Popova, St. Petersburg, 197022, Russia; D. V. Efremov Institute of Electrophysical Apparatus, 3, pos. Metallostroy, St. Petersburg, 196641, Russia
Russian Federation

Zakhar G. Lyullin



D. K. Kostrin
St. Petersburg Electrotechnical University «LETI», 5, ul. Professora Popova, St. Petersburg, 197022, Russia
Russian Federation

Dmitrii K. Kostrin



References

1. Zabrodin B. V., Lomasov V. N., Motornyi A. V. Radionuclide imaging methods. — St. Petersburg: SPbGU, 2006. — 87 p. [in Russian].

2. Taskaev S. Yu., Kanygin V. V. Boron-neutron capture therapy. — Novosibirsk: SO RAN, 2016. — 215 p. [in Russian].

3. Ivanov A. A., Smirnov A. N., Taskaev S. Yu., et al. Accelerator neutron source for boron-neutron capture therapy / Usp. Fiz. Nauk. 2022. Vol. 192. No. 8. P. 893 – 912 [in Russian]. DOI: 10.3367/UFNr.2021.02.038940

4. Onishchenko L. M. Cyclotrons / Phys. Elem. Part. At. Nucl. 2008. Vol. 39. No. 6. P. 1843 – 1850 [in Russian].

5. Smirnov V. L. Cyclotron and its modeling / Phys. Elem. Part. At. Nucl. 2021. Vol. 52. No. 5. P. 1158 – 1304 [in Russian].

6. Bogdanov P. V., Vorogushin M. F., Lamzin E. A., et al. Creation of compact cyclotrons SS-18/9, SS-12 and MSS-30/15 for the production of medical radioisotopes / Tech. Phys. 2011. Vol. 81. No. 10. P. 68 – 83 [in Russian].

7. Kazarinov N. Yu., Gulbekyan G. G., Ivanenko I. A. Calculation of the beam output from the cyclotron TR-24 and DC-140 / Phys. Elem. Part. At. Nucl. Lett. 2020. Vol. 17. No. 4. P. 468 – 473 [in Russian].

8. Sharkov B. Yu., Meshkov I. N. Development of physics and technology of charged particle accelerators. — Moscow: RAN, 2021. — 140 p. [in Russian].

9. Korenev S. A., Dyubkov V. S. On recharging foils and their service life in charged particle accelerators / Proc. of the IV Int. Conf. «Laser, plasma research and Technologies». — Moscow: MEPhI, 2018. P. 402 – 403 [in Russian].

10. Hellborg R. Electrostatic Accelerators. — Berlin – Heidelberg: Springer, 2005. — 275 p.

11. Kabiraj D., Ojha S., Abhilash S., et al. Defect-oriented carbon stripper foil development / Nucl. Instrum. Methods Phys. Res., Sect. A. 2004. Vol. 521. No. 1. P. 183 – 186. DOI: 10.1016/j.nima.2003.11.149

12. Jaggi V., Pavan R., Zeisler S. Production of carbon stripper foils for high-power cyclotrons / Nucl. Instrum. Methods Phys. Res., Sect. A. 2006. Vol. 561. No. 1. P. 1 – 3. DOI: 10.1016/j.nima.2005.12.183

13. Miller S. A., Jolivet C. S., Stoner J. O., Jr. New methods for testing cyclotron carbon stripper foils / Nucl. Instrum. Methods Phys. Res., Sect. A. 2008. Vol. 590. Nos. 1 – 3. P. 57 – 65. DOI: 10.1016/j.nima.2008.02.068

14. Saha P., Yoshimoto M., Hotchi H., et al. Measurement of continuous degradation of a stripper foil during ths operation with 300 kW beam power in the 3-GeV RCS of J-PARC / J. Radioanal. Nucl. Chem. 2015. Vol. 305. No. 3. P. 851 – 857. DOI: 10.1007/s10967-015-4023-7

15. Takeda Y., Irie Y., Sugai I., et al. Measurement of lifetimes of thin carbon stripper foils produced by ion-beam sputtering / Vacuum. 2010. Vol. 84. No. 12. P. 1448 – 1451. DOI: 10.1016/j.vacuum.2010.01.050

16. Sugai I., Oyaizu M., Takeda Y., et al. Influence of carbon material and sputtering angle on stripper foil lifetime / Nucl. Instrum. Methods Phys. Res., Sect. A. 2010. Vol. 613. No. 3. P. 448 – 452. DOI: 10.1016/j.nima.2009.10.001

17. Gikal B. N., Gulbekyan G. G., Kazacha V. I., Kamanin D. V. Calculation of the lifetime of carbon recharge targets in intense flows of heavy ions. — Dubna: OIYaI, 2005. — 12 p. [in Russian].

18. Egorova V. A., Zhukovskii M. E., Podolyako S. V., Tarakanov I. A. Mathematical model of proton interaction with matter. — Moscow: IPM, 2017. — 24 p. [in Russian].

19. Artemov A. S., Baigachev Yu. K., Gevorkov A. K., Sidorin A. O. Interaction of H– ions with foil targets of the recharging device of the beam transport channel / Tech. Phys. 1998. Vol. 68. No. 8. P. 102 – 105 [in Russian].

20. Veresov O. L., Grigorenko S. V., Udovichenko S. Yu. Conditions for the formation of an H–/D– beam in a volumetric plasma source with a magnetic filter / Tech. Phys. 2000. Vol. 70. No. 2. P. 95 – 101 [in Russian].

21. Erpalov A. V., Khoroshevsky K. A., Rumyantseva E. A., Gadolina I. V. A method for evaluating the durability of structures under stationary and non-stationary random loads using variational mode decomposition / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 9. P. 63 – 74 [in Russian]. DOI: 10.26896/1028-6861-2024-90-9-63-74

22. Kostrin D. K., Lisenkov A. A., Ramazanov A. N., Semenova A. N. Vacuum arc deposition of metal-like carbide coatings / Russ. Phys. J. 2016. Vol. 59. No. 9/2. P. 240 – 243 [in Russian].

23. Tupik V. A., Potapov A. A., Margolin V. I., Kostrin D. K. Application of arc discharge for deposition of metallic nanoscale films / Non-Ferrous Metals. 2021. No. 6. P. 55 – 59 [in Russian]. DOI: 10.17580/tsm.2021.06.08

24. Lisenkov A. A., Kostrin D. K., Pikus M. I. Vacuum Arc Deposition of Carbon and Carbon-Based Coatings / Solid State Phenom. 2017. Vol. 265. P. 750 – 754. DOI: 10.4028/www.scientific.net/SSP.265.750

25. Kindler B., Hartmann W., Hubner A., et al. Development of carbon foils with a thickness of up to 600 μg/cm2 / Nucl. Instrum. Methods Phys. Res., Sect. A. 2010. Vol. 613. No. 3. P. 425 – 428. DOI: 10.1016/j.nima.2009.09.092

26. Trifonov S. A., Vorob’ev K. S., Kostrin D. K., Martsynukov S. A. Modeling of a multicusp magnetic system of a source of accelerated neutral particles / LETI Trans. on Electr. Eng. and Comp. Sci. 2024. Vol. 17. No. 5. P. 5 – 14 [in Russian]. DOI: 10.32603/2071-8985-2024-17-5-5-14

27. Lee Y., Ji Q., Leung K., Zahir N. Nanobeam production with the multicusp ion source / Rev. Sci. Instrum. 2000. Vol. 71. No. 2. P. 722 – 724. DOI: 10.1063/1.1150273

28. Zhan H., Hu C. Kinetic solutions for electrons in multi-cusp ion source / Appl. Phys. Lett. 2011. Vol. 99. No. 22. P. 221501. DOI: 10.1063/1.3664347

29. Belyaev V. A., Dubrovin M. M., Kosarev P. M., et al. Multicusp Trap as Model of Plasma Neutralizer for ITER Neutral Beam Injector / Fusion Sci. Technol. 2005. Vol. 47. No. 1T. P. 124 – 127. DOI: 10.13182/FST05-A622

30. Ankudinov A. V., Minarskiy A. M. Optimization of measurements of the interaction force vector in atomic force microscopy / Tech. Phys. 2021. Vol. 91. No. 6. P. 1045 – 1058 [in Russian]. DOI: 10.21883/jtf.2021.06.50877.303-20

31. Kapustin R. D., Kirillov A. O., Uvarov V. I., Zakorzhevsky V. V. Investigation of the effect of the morphology of initial powders on the structural and dimensional characteristics of porous ceramic materials based on SiC / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 11. P. 44 – 51 [in Russian]. DOI: 10.26896/1028-6861-2023-89-11-44-51

32. Makhutov N. A. Development of technical diagnostics in academic and industrial laboratories / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 10. P. 52 – 54 [in Russian]. DOI: 10.26896/1028-6861-2023-89-10-52-54


Review

For citations:


Goltyaev I.V., Baryshnikov J.S., Grigorenko S.V., Veresov O.L., Lazarev I.V., Rodionov I.A., Lyullin Z.G., Kostrin D.K. Estimating the longevity of carbon stripper foils of cyclotron accelerators. Industrial laboratory. Diagnostics of materials. 2025;91(6):45-53. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-6-45-53

Views: 100


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)