

Determination of fatty acids with conjugated C=C bonds in pomegranate seed oil using Raman spectroscopy
https://doi.org/10.26896/1028-6861-2025-91-8-16-22
Abstract
For the first time, we suggest a Raman spectroscopic method for rapid evaluation of punicic acid content in pomegranate seed oil. In this contribution, we study Raman spectra of mixtures of pomegranate seed oil and sunflower oil as model systems of pomegranate seed oil with different punicic acid content using two excitation wavelengths (532 and 785 nm). The spectrum of punicic acid, calculated using the density functional theory, is also considered. We found that the ratio I1628/I1442 of the peak intensities of Raman lines at 1628 and 1442 cm–1 is proportional to the punicic acid content. The line at 1628 cm–1 is related to the stretching vibrations of double carbon-carbon bonds (C=C) in the sequence of three conjugated bonds in punicic acid molecule. The line at 1442 cm–1 belongs to the scissoring C–H vibrations in CH2 groups in molecules of all fatty acids of pomegranate seed oil. We revealed that Raman spectroscopy permits detecting punicic acid even at very low contents (up to 1 wt.%). In addition, we found that the record-ing Raman spectra using excitation wavelength of 532 allows one to detect carotenoids in pomegranate seed oil.
About the Authors
S. M. KuznetsovRussian Federation
Sergey M. Kuznetsov
38, ul. Vavilova, Moscow, 119991
V. S. Novikov
Russian Federation
Vasiliy S. Novikov
38, ul. Vavilova, Moscow, 119991
P. K. Laptinskaya
Russian Federation
Polina K. Laptinskaya
38, ul. Vavilova, Moscow, 119991
O. S. Kudryavtsev
Russian Federation
Oleg S. Kudryavtsev
38, ul. Vavilova, Moscow, 119991
M. N. Moskovskiy
Russian Federation
Maksim N. Moskovskiy
5, 1-y Institutsky proezd, Moscow, 109428
E. A. Sagitova
Russian Federation
Elena A. Sagitova
38, ul. Vavilova, Moscow, 119991
References
1. Paul A., Radhakrishnan M. Pomegranate seed oil in food industry: extraction, characterization, and applications / Trends Food Sci. Technol. 2020. Vol. 105. P. 273 – 283. DOI: 10.1016/j.tifs.2020.09.014
2. Di Napoli A., Germani F., Parisi F., Zucchetti P. The beneficial effects of pomegranate Punica granatum L. consumption on human health: a review / Pharmadvances. 2023. Vol. 5. No. 1. DOI: 10.36118/pharmadvances.2022.45
3. Aruna P., Venkataramanamma D., Singh A. K., Singh R. P. Health benefits of punicic acid: a review / Compr. Rev. Food Sci. Food Saf. 2016. Vol. 15. No. 1. P. 16 – 27. DOI: 10.1111/1541-4337.12171
4. Novruzov E. N., Zeynalova A. M. Biological activity and therapeutic effect of pomegranate seed oil / Rast. Resursy. 2019. Vol. 55. No. 2. P. 186 – 194 [in Russian]. DOI: 10.1134/s0033994619020080
5. de Melo I. L. P., de Carvalho E. B. T., de Oliveira e Silva A. M., et al. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.) / Food Sci. Technol. 2016. Vol. 36. No. 1. P. 132 – 139. DOI: 10.1590/1678-457x.0069
6. Turtygin A. V., Deineka V. I., Deineka L. A. Determination of the triglyceride composition of pomegranate seed oil by reversed-phase HPLC and spectrophotometry / J. Anal. Chem. 2013. Vol. 68. No. 6. P. 558 – 563. DOI: 10.1134/s1061934813060142
7. Costa A. M. M., Silva L. O., Torres A. G. Chemical composition of commercial cold-pressed pomegranate (Punica granatum) seed oil from Turkey and Israel, and the use of bioactive compounds for samples’ origin preliminary discrimination / J. Food Compos. Anal. 2019. Vol. 75. P. 8 – 16. DOI: 10.1016/j.jfca.2018.09.004
8. Zieliñska A., Wójcicki K., Klensporf-Pawlik D., et al. Cold-pressed pomegranate seed oil: study of punicic acid properties by coupling of GC/FID and FTIR / Molecules. 2022. Vol. 27. No. 18. P. 1 – 10. DOI: 10.3390/molecules27185863
9. Deineka V. I., Nguen A. V., Deineka L. A. Features of sample preparation for analysis of seed oil with conjugate fatty acids: Momordica cochinchinensis seed oil / Industr. Lab. Mater. Diagn. 2018. Vol. 84. No. 2. P. 18 – 23 [in Russian]. DOI: 10.26896/1028-6861-2018-84-2-18-23
10. Uncu O., Napiórkowska A., Szajna T. K., Ozen B. Evaluation of three spectroscopic techniques in determination of adulteration of cold pressed pomegranate seed oils / Microchem. J. 2020. Vol. 158. 105128. DOI: 10.1016/j.microc.2020.105128
11. Munnier E., Al Assaad A., David S., et al. Homogeneous distribution of fatty ester-based active cosmetic ingredients in hydrophilic thin films by means of nanodispersion / Int. J. Cosmet. Sci. 2020. Vol. 42. No. 5. P. 512 – 519. DOI: 10.1111/ics.12652
12. Kwofie F., Lavine B. K., Ottaway J., Booksh K. Differentiation of edible oils by type using raman spectroscopy and pattern recognition methods / Appl. Spectrosc. 2020. Vol. 74. No. 6. P. 645 – 654. DOI: 10.1177/0003702819888220
13. Shehnaz H., Ashraf A., Majeed M. I., et al. Identification of adulterated cooking oil by Raman spectroscopy / Food Anal. Methods. 2024. Vol. 17. No. 7. P. 997 – 1004. DOI: 10.1007/s12161-024-02626-5
14. El-Abassy R. M., Donfack P., Materny A. Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration / J. Raman Spectrosc. 2009. Vol. 40. No. 9. P. 1284 – 1289. DOI: 10.1002/jrs.2279
15. Barros I. H. A. S., Paixão L. S., Nascimento M. H. C., et al. Use of portable Raman spectroscopy in the quality control of extra virgin olive oil and adulterated compound oils / Vib. Spectrosc. 2021. Vol. 116. 103299. DOI: 10.1016/j.vibspec.2021.103299
16. Vargas Jentzsch P., Ciobotã V. Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Supplementary material / Flavour Fragrance. J. 2014. Vol. 29. No. 5. P. 287 – 295. DOI: 10.1002/ffj.3203
17. Wang J., Lv J., Mei T., et al. Spectroscopic studies on thermal degradation and quantitative prediction on acid value of edible oil during frying by Raman spectroscopy / Spectrochim. Acta, Part A. 2023. Vol. 293. 122477. DOI: 10.1016/j.saa.2023.122477
18. Kuznetsov S. M., Novikov V. S., Vasimov D. D., et al. Raman spectroscopy of vegetable oils and omega-3 fish oil supplements: quantitative analysis / Photonics Russia. 2024. Vol. 18. No. 8. P. 650 – 659 [in Russian]. DOI: 10.22184/1993-7296.fros.2024.18.8.650.659
19. Portarena S., Anselmi C., Leonardi L., et al. Lutein/âcarotene ratio in extra virgin olive oil: an easy and rapid quantification method by Raman spectroscopy / Food Chem. 2023. Vol. 404. No. PB. 134748. DOI: 10.1016/j.foodchem.2022.134748
20. El-Abassy R. M., Donfack P., Materny A. Assessment of conventional and microwave heating induced degradation of carotenoids in olive oil by VIS Raman spectroscopy and classical methods / Food Res. Int. 2010. Vol. 43. No. 3. P. 694 – 700. DOI: 10.1016/j.foodres.2009.10.021
21. Schaffer H. E., Chance R. R., Silbey R. J., et al. Conjugation length dependence of Raman scattering in a series of linear polyenes: Implications for polyacetylene / J. Chem. Phys. 1991. Vol. 94. No. 6. P. 4161 – 4170. DOI: 10.1063/1.460649
22. Kuznetsov S. M., Sagitova E. A., Prokhorov K. A., et al. Dependence of C=C stretching wavenumber on polyene length in degraded polyvinyl chloride: a comparative empirical, classical mechanics, and DFT study / Spectrochim. Acta, Part A. 2022. Vol. 282. 121653. DOI: 10.1016/j.saa.2022.121653
23. Novikov V. S., Kuzmin V. V., Darvin M. E., et al. Relations between the Raman spectra and molecular structure of selected carotenoids: DFT study of á-carotene, â-carotene, ã-carotene and lycopene / Spectrochim. Acta, Part A. 2022. Vol. 270. 120755. DOI: 10.1016/j.saa.2021.120755
24. Kuznetsov S. M., Novikov V. S., Sagitova E. A., et al. Raman spectra of n-pentane, n-hexane, and n-octadecane: experimental and density functional theory (DFT) study / Laser Phes. 2019. Vol. 29. No. 8. 085701. DOI: 10.1088/1555-6611/ab2908
25. Baker J., Pulay P. Assessment of the Handy – Cohen optimized exchange density functional for organic reactions / J. Chem. Phys. 2002. Vol. 117. No. 4. P. 1441 – 1449. DOI: 10.1063/1.1485723
26. Liubimovskii S. O., Novikov V. S., Shlyakhtin A. V., et al. Raman study of block copolymers of methyl ethylene phosphate with caprolactone and L-lactide / Polymers (Basel). 2022. Vol. 14. No. 24. 5367. DOI: 10.3390/polym14245367
27. Laikov D. N., Ustynyuk Y. A. PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing / Russ. Chem. Bull. 2005. Vol. 54. No. 3. P. 820 – 826. DOI: 10.1007/s11172-005-0329-x
28. Chemcraft — Freeware Lite version. https://www.chemcraftprog.com/lite.html (accessed April 3, 2025).
29. Czamara K., Majzner K., Pacia M. Z., et al. Raman spectroscopy of lipids: A review / J. Raman Spectrosc. 2015. Vol. 46. No. 1. P. 4 – 20. DOI: 10.1002/jrs.4607
30. Darvin M. E., Gersonde I., Albrecht H., et al. Resonance Raman spectroscopy for the detection of carotenoids in foodstuffs. Influence of the nutrition on the antioxidative potential of the skin / Laser Phys. Lett. 2007. Vol. 4. No. 6. P. 452 – 456. DOI: 10.1002/lapl.200710004
31. Llansola-Portoles M. J., Pascal A. A., Robert B. Electronic and vibrational properties of carotenoids: from in vitro to in vivo / J. R. Soc. Interface. 2017. Vol. 14. No. 135. 20170504. DOI: 10.1098/rsif.2017.0504
Review
For citations:
Kuznetsov S.M., Novikov V.S., Laptinskaya P.K., Kudryavtsev O.S., Moskovskiy M.N., Sagitova E.A. Determination of fatty acids with conjugated C=C bonds in pomegranate seed oil using Raman spectroscopy. Industrial laboratory. Diagnostics of materials. 2025;91(8):16-22. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-8-16-22