Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Assesment of the texture of composite materials pyrocarbon matrix by the opical method using a graphic editor

https://doi.org/10.26896/1028-6861-2025-91-8-31-40

Abstract

One of the methods for controlling the characteristics of composite materials is the formation of a pyrocarbon matrix with the required anisotropy of pyrocarbon. This work presents results assessing the texture of pyrolytic carbon matrices in composite materials using an optical method. The extinction angle —

a quantitative characteristic of texture — was determined by registering the intensity (brightness) of the quadrant of the pyrolytic carbon spherulite around the carbon fiber. The sought-after value was identified as the angle of rotation of the microscope analyser corresponding to the minimum intensity. A series of micrographs depicting the microstructure of the pyrolytic carbon spherulite, acquired at various analyser rotation angles relative to the polariser, were processed within a graphical editor. Subsequently, the mean grey-level values of selected pixels in a defined region were analysed to identify the point of minimum intensity. It was demonstrated that, with appropriate illumination levels, the spectral characteristics of the light source exert a negligible influence on the image processing and brightness measurement when using graded grey levels. Limitations associated with the geometric dimensions of the investigated pyrolytic carbon were assessed. Extinction angle determination for samples incorporating diverse pyrolytic carbon matrices (including a bilayer matrix) revealed that pyrolytic carbon produced via a temperature gradient method exhibits a highly textured structure, whereas material produced via an isothermal method displays a lower degree of texture. The extinction angles for the bilayer pyrolytic carbon matrix were found to differ between the individual layers. The findings are expected to contribute to the refinement of techniques for microstructural analysis of pyrolytic carbon.

About the Authors

A. V. Nechaeva
Urals Scientific Research Institute of Composite Materials
Russian Federation

Anastasiya V. Nechaeva

57, ul. Novozvyaginskaya, Perm, 614014



S. V. Dokuchaev
Urals Scientific Research Institute of Composite Materials
Russian Federation

Stanislav V. Dokuchaev

57, ul. Novozvyaginskaya, Perm, 614014



V. M. Blinov
Urals Scientific Research Institute of Composite Materials
Russian Federation

Vladimir M. Blinov

57, ul. Novozvyaginskaya, Perm, 614014



References

1. Astashina N. B., Loginova N. P., Rogotnev A. A., et al. Evolution of fatigue life and osseointegration parameters of carbon-carbon composite material for medical applications / Russ. J. Biomech. 2023. Vol. 27. No. 4. P. 159 – 170 [in Russian]. DOI: 10.15593/rzhbiomeh/2023.4.13

2. Razumovskiy E. S., Shavshukov V. E., Anoshkin A. N. Prediction of the bearing capacity of the hip joint endoprosthesis from the C/C composites / Vestn. PNIPU. 2022. No. 4. P. 80 – 89 [in Russian]. DOI: 10.15593/perm.mech/2022.4.08

3. Serino G., Gusmini M., Audenino Al., et. al. Multiscale characterization of isotropic pyrolytic carbon used for mechanical heart valve production / Processes. 2021. Vol. 9. No. 2. P. 338. DOI: 10.3390/pr9020338

4. Shchurik A. G. Artificial carbon materials. — Perm, 2009. — 342 p. [in Russian].

5. Oberlin A. Pyrocarbons / Uglerod. 2002. Vol. 40. P. 7 – 24 [in Russian].

6. Kolesnikov S. A., Maximova D. S. Formation of physical and mechanical characteristics of carbon-carbon materials in iso-static technology for producing carbon matrix / Izv. Vuzov. Khimiya Khim. Tekhnol. 2018. Vol. 61. No. 11. P. 50 – 61 [in Russian]. DOI: 10.6060/ivkkt.20186111.14y

7. Wang Yafeng, Fan Zheqiong, Zhou Xunpeng, et al. Friction properties of bulk isotropic pyrocarbon materials based on different composite microstructures / Materials Research and Technology. 2022. Vol. 21. P. 4079 – 4092.

8. Kuznetsov V. G. Physiscs-mechanical properties of pyrocarbon coatings for operation under high-frequency loads and high temperatures / Act. Probl. Machine Build. 2021. No. 11. P. 7 – 11 [in Russian]. DOI: 10.26160/2309-8864-2021-11-7-11

9. Abyzov A. M. Chemical vapor deposition of pyrocarbon coatings on powders in a fluidized bed. I. Apparatus, Fluidization / Izv. SPbGTI(TU). 2023. No. 66(92). P. 97 – 104 [in Russian]. DOI: 10.36807/1998-9849-2023-66-92-97-104

10. Yan Qianjun, Xin Yang, Zhang Xiaxiang, et al. Effect of graphitization temperature on microstructure, mechanical and ablative properties of C/C composites with pitch and pyrocarbon dual-matrix / Ceramics International. 2023. Vol. 49. Issue 2. P. 2860 – 2870. DOI: 10.1016/j.ceramint.2022.09.269

11. Staroverova A. V., Tokmachev M. G., Gagarin A. N., Ferapontov N. B. Determination of the error of measurements obtained by the optical micrometry / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 6. P. 42 – 50 [in Russian]. DOI: 10.26896/1028-6861-2023-89-6-42-50

12. Egorova O. V. Technocal microscopy. The practice of working with microscopes for technical purposes. — St. Petersburg: Lan’, 2021. — 524 p. [in Russian].

13. Varrik N. M., Maksimov V. G. Study of the structural changes on oxide ceramics using polarization microscopy / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 7. P. 29 – 35 [in Russian]. DOI: 10.26896/1028-6861-2022-88-7-29-35

14. Papkova M. V., Magnitsky I. V., Tashchilov S. V., Dvoretsky A. E. Determination of pyrocarbon matrix characteristics in carbon/carbon composites / Khimiya Khim. Tekhnol. 2021. Vol. 64. No. 5. P. 44 – 49 [in Russian]. DOI: 10.6060/ivkkt.20216405.6352

15. Li Miao-Ling, Qi Le-Hua, Li He-Jun, Xu Guo-Zhong. Measurement of the extinction angle about laminar pyrocarbons by image analysis in reflection polarized light / Materials Science and Engineering A. 2007. Vol. 448. P. 80 – 87. DOI: 10.1016/j.msea.2006.11.104

16. Vallerot J.-M., Bourrat X. Pyrocarbon optical properties in reflected light / Carbon. 2006. Vol. 44. P. 1565 – 1571. DOI: 10.1016/j.carbon.2005.12.046

17. Vallerot J.-M., Bourrat X., Mouchon A., Chollon G. Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques / Carbon. 2006. Vol. 44. P. 1833 – 1844. DOI: 10.1016/j.carbon.2005.12.029

18. Reznik B., Hüttingerb K. On the terminology for pyrolytic carbon / Carbon. 2002. Vol. 40. P. 617 – 636. DOI: 10.1016/s0008-6223(01)00282-2

19. Burgio F., Fabbri P., Magnani G., Scafè M. Cf/C composites: correlation between CVI process parameters and Pyrolytic Carbon microstructure / Fracture and Structural Integrity. 2014. Vol. 30. P. 68 – 74. DOI: 10.3221/igf-esis.30.10


Review

For citations:


Nechaeva A.V., Dokuchaev S.V., Blinov V.M. Assesment of the texture of composite materials pyrocarbon matrix by the opical method using a graphic editor. Industrial laboratory. Diagnostics of materials. 2025;91(8):31-40. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-8-31-40

Views: 30


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)