Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of electrophysical properties of composite dielectric material with low permittivity

https://doi.org/10.26896/1028-6861-2025-91-8-41-46

Abstract

The active development of telecommunication systems operating at frequencies from 30 GHz and above (including 5G systems) requires the development and creation of materials with a dielectric constant of less than 2.2 compatible with printed circuit board technology. Technological approaches to manufacturing such materials are based on the formation of air cavities in the initial dielectric matrix and require control of their microwave parameters (primarily the dielectric constant and the tangent of the dielectric loss angle) in a given frequency range. The paper presents the results of a study of the electrophysical properties of a composite dielectric material with a low dielectric constant. Sealed dielectric plates with a predetermined volume distribution of air cavities were produced using mechanical perforation and additive 3D printing technology. The microwave parameters of the obtained samples were determined using a detachable cylindrical resonator at a frequency of ~10 GHz. Samples with a minimum dielectric constant of 1.75 were examined. It has been established that the use of additive 3D printing technologies, due to several features, leads to a distortion of the geometric dimensions of the forming air cavities, which in turn affects the electrophysical properties of the samples. The results obtained can be used in the development of new microwave materials.

About the Authors

D. A. Kudryavtseva
St. Petersburg Electrotechnical University «LETI»
Russian Federation

Daria A. Kudryavtseva

5 lit. F, ul. Prof. Popova, St Petersburg, 197022



A. A. Tsymbalyuk
St. Petersburg Electrotechnical University «LETI»
Russian Federation

Andrey A. Tsymbalyuk

5 lit. F, ul. Prof. Popova, St Petersburg, 197022



A. E. Komlev
St. Petersburg Electrotechnical University «LETI»
Russian Federation

Andrey E. Komlev

5 lit. F, ul. Prof. Popova, St Petersburg, 197022



A. G. Altynnikov
St. Petersburg Electrotechnical University «LETI»
Russian Federation

Andrey G. Altynnikov

5 lit. F, ul. Prof. Popova, St Petersburg, 197022



R. A. Platonov
St. Petersburg Electrotechnical University «LETI»
Russian Federation

Roman A. Platonov

5 lit. F, ul. Prof. Popova, St Petersburg, 197022



A. G. Gagarin
St. Petersburg Electrotechnical University «LETI»
Russian Federation

Alexander G. Gagarin

5 lit. F, ul. Prof. Popova, St Petersburg, 197022



References

1. Tong C. PCB materials and design requirements for 5G systems.— Cham: Springer, 2022. DOI: 10.1007/978-3-031-17207-6

2. Krishna N., Padmasine K. A review on microwave band pass filters: materials and design optimization techniques for wireless communication systems / Materials Science in Semiconductor Processing. 20 23. Vol. 154. 107181. DOI: 10.1016/j.mssp.2022.107181

3. Varghese J., Joseph N., Jantunen H., et al. Microwave materials for defense and aerospace applications. — Cham: Springer, 2020. DOI: 10.1007/978-3-030-16347-1

4. Wang L., Yang J., Cheng W., et al. Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission / Frontiers in Materials. 2021. Vol. 8. 774843. DOI: 10.3389/fmats.2021.774843

5. Islam M., Fu Y., Deb H., et al. Polymer-based low dielectric constant and loss materials for high-speed communication network: Dielectric constants and challenges / European Polymer Journal. 2023. Vol. 200. 112543. DOI: 10.1016/j.eurpolymj.2023.112543

6. Li Y., Zhou J., Shen J., et al. Ultra-low permittivity HSM/PTFE composites for high-frequency microwave circuit application / Journal of Materials Science: Materials in Electronics. 2022. Vol. 33. No. 13. P. 10096 – 10103. DOI: 10.1007/s10854-022-07999-z

7. Platonov R., Altynnikov A., Kozyrev A. A Tunable Beamforming Ferroelectric Lens for Millimeter Wavelength Ranges / Coatings. 2020. Vol. 10. No. 2. P. 180. DOI: 10.3390/coatings10020180

8. Nasr A., Nashashibi A., Sarabandi K. Ultrawideband characterization of complex dielectric constant of planar materials for 5G applications / IEEE Transactions on Instrumentation and Measurement. 2021. Vol. 70. P. 1 – 11. DOI: 10.1109/tim.2021.3102742

9. Wu C., Li Q., Hong Y., et al. Development of a High-Frequency Polytetrafluoroethylene (PTFE)-Based Laminate With an Ultra-Low Dielectric Constant by Combination of Ceramic Hollow Spheres and PTFE Resin / Chemistry Select. 2024. Vol. 9. No. 13. P. e202303461. DOI: 10.1002/slct.202303461

10. Hong Z., DongyangW., Yong F., et al. Dielectric properties of polyimide/SiO2 hollow spheres composite films with ultralow dielectric constant / Materials Science and Engineering: B. 2016. Vol. 203. P. 13 – 18. DOI: 10.1016/j.mseb.2015.10.003

11. Han K., Zhou J., Shen J., et al. Effect of filler structure on the dielectric and thermal properties of SiO2/PTFE composites / Journal of Materials Science: Materials in Electronics. 2020. Vol. 31. P. 9196 – 9202. DOI: 10.1007/s10854-020-03449-w

12. Bi K., Wang Q., Xu J., et al. All-dielectric metamaterial fabrication techniques / Advanced Optical Materials. 2021. Vol. 9. No. 1. P. 2001474. DOI: 10.1002/adom.202001474

13. Mei Z., Bai J., Cui T. Gradient index metamaterials realized by drilling hole arrays / Journal of Physics D: Applied Physics. 2010. Vol. 43. No. 5. 055404. DOI: 10.1088/0022-3727/43/5/055404

14. Sato K., Ujiie H. A plate Luneberg lens with the permittivity distribution controlled by hole density / Electronics and Communications in Japan (Part I: Communications). 2002. Vol. 85. No. 9. P. 1 – 12. DOI: 10.1002/ecja.1120

15. Munina I., Grigoriev I., O’Donnell G., et al. A review of 3D printed gradient refractive index lens antennas / IEEE Access. 2023. Vol. 11. P. 8790 – 8809. DOI: 10.1109/access.2023.3239782

16. Zheng Y. X., Xiang B. J., Pan Y. M., et al. Compact cylinder Luneburg-lens antennas based on 3D printing technology / IEEE Transactions on Antennas and Propagation. 2023. Vol. 71. No. 3. P. 2311 – 2320. DOI: 10.1109/tap.2023.3237262

17. Nguyen N., Rolland A., Boriskin A., et al. Size and weight reduction of integrated lens antennas using a cylindrical air cavity / IEEE Transactions on Antennas and Propagation. 2012. Vol. 60. No. 12. P. 5993 – 5998. DOI: 10.1109/tap.2012.2208931

18. Mrnka M., Raida Z. An effective permittivity tensor of cylindrically perforated dielectrics / IEEE Antennas and Wireless Propagation Letters. 2017. Vol. 17. No. 1. P. 66 – 69. DOI: 10.1109/lawp.2017.2774448

19. Kozyrev A. B., Komlev A. E., Sosynov A. M., et al. Study of the properties of a composite material for microwave applications based on PTFE with different concentrations and small particles of ceramic filler / News of higher educational institutions of Russia. Radio electronics. 2023. Vol. 26. No. 2. P. 16 – 24 [in Russian]. DOI: 10.32603/1993-8985-2023-26-2-16-24

20. Krylov V. P. Study of the relationship between the intrinsic Q-factor of a volumetric wave resonator and the error in determining the dielectric constant of a material / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 4. P. 45 – 49 [in Russian]. DOI: 10.26896/1028-6861-2023-89-4-45-49

21. Rothwell E. J., Frasch J. L., Ellison S. M., et al. Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials / Progress in Electromagnetics Research. 2016. Vol. 157. P. 31 – 47. DOI: 10.2528/pier16071706

22. Gagarin A., Tsyganova D., Altynnikov A., et al. An Adaptation of the Split-Cylinder Resonator Method for Measuring the Microwave Properties of Thin Ferroelectric Films in a “Thin Film – Substrate” Structure / Sensors. 2024. Vol. 24. No. 3. P. 755. DOI: 10.3390/s24030755


Review

For citations:


Kudryavtseva D.A., Tsymbalyuk A.A., Komlev A.E., Altynnikov A.G., Platonov R.A., Gagarin A.G. Research of electrophysical properties of composite dielectric material with low permittivity. Industrial laboratory. Diagnostics of materials. 2025;91(8):41-46. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-8-41-46

Views: 34


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)