

The survivability of a pipeline with a surface crack taking into account the biaxial constraint along its front
https://doi.org/10.26896/1028-6861-2025-91-8-56-64
Abstract
A method for assessing the survivability of a pipeline at a distance from a transverse weld with a longitudinal surface semi-elliptical mode I crack is proposed, taking into account the biaxial constraint along its front. A literature review has shown that there are currently no works in which the forecast of the growth of such crack is carried out taking into account the Txx- and Tzz-stresses, which are nonsingular terms in the Williams expansion for stresses at the crack tip. To model the growth of a fatigue crack, a modified Paris formula is used, in which the range of the effective stress intensity factor (SIF) is substituted instead of the span of the usual SIF. In this case, in addition to the usual SIF, the expression for the effective SIF includes the Txx- and Tzz-stresses. The proposed two-parameter approach allows taking into account the constraint in the crack plane in the direction perpendicular to the front, due to the introduction of Txx-stresses into the expression for the effective SIF, and in the longitudinal direction due to the introduction of Tzz-stresses. The expression for the effective SIF was previously obtained by the authors by improving the fracture criterion of maximum tangential stresses. It is assumed that tangential stresses in the fracture process zone are equal to the local strength of the material. In this case, the size of the fracture process zone and the local strength of the material are determined taking into account the Txx- and Tzz-stresses. Numerical simulation was performed in the finite element environment of ANSYS Workbench. To construct a mathematical model of a pipe with a semi-elliptical crack, three types of finite elements (FE) were used: 10-node tetrahedral elements SOLID187; 20-node hexahedral FE SOLID186 and 15-node wedge FE degenerated from SOLID186. The latter of which singular FEs have a built-in function for calculating the SIF and Txx-stresses. Special macros were written in the APDL programming language to calculate the Tzz-stresses and the effective SIF along the crack front. It is shown that the use of a one-parameter approach based on the Paris formula does not allow taking into account the biaxiality of the stress state when assessing the survivability of an oil pipeline, since, unlike the effective SIF, the usual SIF for a longitudinal semi-elliptical crack depends only on circumferential stresses. It is established that for cracks of the same initial depth, the durability decreases with an increase in half-length. It is revealed that the durability predicted using the usual one-parameter Paris formula is approximately 30% underestimated, compared to the results of a two-parameter analysis.
About the Authors
A. M. PokrovskiiRussian Federation
Alexei M. Pokrovskii
5, str. 1, 2-ya Baumanskaya ul., Moscow, 105005
Yu. G. Matvienko
Russian Federation
Yury G. Matvienko
4, Maly Kharitonievsky per., Moscow, 101000
A. I. Kazantsev
Russian Federation
Alexei I. Kazantsev
5, str. 1, 2-ya Baumanskaya ul., Moscow, 105005
References
1. Paris P., Erdogan F. A critical analysis of crack propagation laws / J. Basic Eng. 1963. Vol. 85. P. 528 – 533.
2. Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum / Effects Environ. Complex Load. Hist. Fatigue Life. 1970. P. 1 – 14.
3. Forman R. G., Kearney V. E., Engle R. M. Numerical analysis of crack propagation in cyclic-loaded structures / J. Basic Eng. 1967. Vol. 89. No. 3. P. 459 – 463.
4. Kujawski D. A new (ΔK + Kmax)0.5 driving force parameter for crack growth in aluminum alloys / Int. J. Fatigue. 2001. Vol. 23. P. 733 – 740. DOI: 10.1016/s0142-1123(01)00023-8
5. Fonte M. A., Stanzl-Tschegg S. E., Holper B., et al. The microstructure and environment influence on fatigue crack growth in 7049 aluminum alloy at different load ratios / Int. J. Fatigue. 2001. Vol. 23. P. S311 – S317. DOI: 10.1016/s0142-1123(01)00179-7
6. Sadananda K., Vasudevan A. K. Fatigue crack growth mechanisms in steels / Int. J. Fatigue. 2003. Vol. 25. P. 899 – 914. DOI: 10.1016/s0142-1123(03)00128-2
7. Dinda S., Kujawski D. Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters / Eng. Fracture Mech. 2004. Vol. 71. P. 1779 – 1790. DOI: 10.1016/j.engfracmech.2003.06.001
8. Sadananda K., Vasudevan A. K. Multiple mechanisms controlling fatigue crack growth / Fatigue Fracture Eng. Mater. Struct. 2003. Vol. 26. P 835 – 845. DOI: 10.1046/j.1460-2695.2003.00684.x
9. Savkin A. N., Badikov K. A., Sedov A. A. Modeling and calculation of fatigue crack growth time in structural steels / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 4. P. 43 – 51 [in Russian]. DOI: 10.26896/1028-6861-2021-87-5-43-51
10. Nejad R. M., Tohidi M., Darbandi A. J., et al. Experimental and numerical investigation of fatigue crack growth behavior and optimizing fatigue life of riveted joints in Al-alloy 2024 plates / Theor. Appl. Fracture Mech. 2020. Vol. 108. 102669. DOI: 10.1016/j.tafmec.2020.102669
11. Sajith S., Shukla S. S., Murthy K. S. R. K., Robi P. S. Mixed mode fatigue crack growth studies in AISI 316 stainless steel / Eur. J. Mech. A/Solids. 2020. Vol. 80. 103898. DOI: 10.1016/j.euromechsol.2019.103898
12. Tumanov N. V., Vorobyova N. A., Kalashnikova A. I., et al. Computational and fractographic studies of stable growth of low-cycle fatigue cracks in an aircraft engine turbine disk under complex loading cycles / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 4. P. 52 – 60 [in Russian]. DOI: 10.26896/1028-6861-2021-87-4-52-60
13. Fedorov A. A., Razumovsky I. A., Matvienko Yu. G. Local indentation as a way to reduce fatigue crack growth rate / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 11. P. 46 – 54 [in Russian]. DOI: 10.26896/1028-6861-2022-88-11-46-54
14. Brahami F., Bouchouicha B., Zemri M., et al. Fatigue crack growth rate, microstructure and mechanical properties of diverse range of aluminum alloy: a comparison / Mech. Mech. Eng. 2018. Vol. 22. No. 1. P. 329 – 339. DOI: 10.2478/mme-2018-0028
15. Veselukha V. M., Shishkin A. E., Bogdanovich A. V. Assessment of the survivability of pipes of the linear section of an oil pipeline with a longitudinal semi-elliptical crack taking into account long-term operation / Mekh. Mash. Mekhanizmov Mater. 2014. No. 3. P. 53 – 58 [in Russian].
16. Pokrovsky A. M., Dubovitsky E. I. Analysis of the survivability of a main oil pipeline in the butt weld zone / Inzh. Zh. Nauka Innov. 2021. Vol. 112. No. 4 [in Russian]. DOI: 10.18698/2308-6033-2021-4-2069
17. Matvienko Yu. G. Two-parametric fracture mechanics. — Moscow: FIZMATLIT, 2020. — 208 p. [in Russian].
18. Williams M. L. On the stress distribution at the base of a stationary crack / J. Appl. Mech. 1957. Vol. 24. No. 1. P. 109 – 114. DOI: 10.1115/1.4011454
19. Roychowdhury S., Dodds Jr R. H. Effect of T-stress on fatigue crack closure in 3-D small-scale yielding / Int. J. Solids Struct. 2004. Vol. 41(9). P. 2581 – 2606. DOI: 10.1016/j.ijsolstr.2003.11.004
20. Hamam R., Pommier S., Bumbieler F. Mode I fatigue crack growth under biaxial loading / Int. J. Fatigue. 2005. Vol. 27. P. 1342 – 1346. DOI: 10.1016/j.ijfatigue.2005.06.020
21. Chernyatin A. S., Matvienko Yu. G., Razumovsky I. A. Fatigue surface crack propagation and intersecting cracks in connection with welding residual stresses / Fatigue Fracture Eng. Mater. Struct. 2018. Vol. 41. No. 10. P. 2140 – 2152. DOI: 10.1111/ffe.12808
22. Varshitsky V. M., Valiev M. I., Kozyrev O. A. Methodology for determining the interval of repeated tests of an oil pipeline section with crack-like defects / Nauka Tekhnol. Truboprov. Transp. Nefti Nefteprod. 2013. No. 3. P. 42 – 46 [in Russian].
23. Pokrovskii A. M., Matvienko Yu. G., Egranov M. P. Prediction of the durability of a plate with a through crack taking into account biaxial constraints of deformations along the front of a normal rupture crack / Inorg. Mater. 2024. Vol. 60. No. 15. DOI: 10.1134/s0020168524700249
24. Pokrovsky A. M., Matvienko Yu. G. Fracture criterion with biaxial constraints of deformations along the front of a normal rupture crack / J. Machinery Manufact. Reliab. 2023. Vol. 52. No. 4. P. 320 – 328. DOI: 10.3103/s1052618823040106
25. Pokrovsky A. M., Egranov M. P. Two-parameter fracture criterion for a normal rupture crack / Inzh. Zh. Nauka Obrazov. 2022. Vol. 127. No. 7 [in Russian]. DOI: 10.18698/2308-6033-2022-7-2191
26. Nakamura T., Parks D. M. Determination of elastic T-stress along three-dimensional crack front an interaction integral / Int. J. Solids Struct. 1992. Vol. 29. P. 1597 – 1611. DOI: 10.1016/0020-7683(92)90011-h
Review
For citations:
Pokrovskii A.M., Matvienko Yu.G., Kazantsev A.I. The survivability of a pipeline with a surface crack taking into account the biaxial constraint along its front. Industrial laboratory. Diagnostics of materials. 2025;91(8):56-64. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-8-56-64