Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of microplastic deformation of W-Ni-Fe tungsten alloys during compression tests

https://doi.org/10.26896/1028-6861-2025-91-8-75-84

Abstract

The widespread use of heavy tungsten alloys (HTAs) in power engineering and mechanical engineering stimulates the development of new methods of synthesis, powder processing and sintering, including additive technologies. At the same time, the mechanisms of HTAs microplastic deformation and their relationship with interphase boundaries remain poorly understood. The paper presents the results of a study of the features of microplastic deformation in coarse-grained HTAs with different strength levels. HTAs with different initial grain sizes were studied. The samples were tested in the initial state and after annealing in a vacuum at 1400°C, the melting point of the γ-phase. Microplastic tests were carried out using the standard technique of relaxation tests of flat microspecimens for compression. The microstructure of the samples was analyzed after loading (at stresses less than and greater than the yield strength). It is shown

that the deformation of pure tungsten at stresses close to the yield strength leads to the formation of dislocation «steps» in the volume of grains and the appearance of grain-boundary microcracks. In coarse-grained strain-hardened HTAs, the formation of dislocation «steps» begins in the region of microplastic deformation at stresses below the yield point. With increasing stress, the size and number of traces of dislocations emerging on the grain surface increase. Deformed HTAs have a high Hall-Petch coefficient due to the increased dislocation density in the interphase boundaries. Annealing of deformed HTAs leads to a decrease in the density of deformation-induced defects and an increase in the concentration of atoms in the interphase boundaries. During deformation of fine-grained HTAs, the formation of dislocation «steps» is not observed, which indicates a significant contribution of plastic interphase boundaries to the deformation process. The results obtained can be used in the manufacture of HTAs for use in the nuclear and aerospace industries.

About the Authors

N. V. Melekhin
Lobachevsky University
Russian Federation

Nikolay V. Melekhin

23, prosp. Gagarina, Nizhny Novgorod, 603022



V. D. Chupriyanova
Lobachevsky University
Russian Federation

Vladislava D. Chupriyanova

23, prosp. Gagarina, Nizhny Novgorod, 603022



A. S. Smirnov
Lobachevsky University; V. V. Bakhirev Institute of Mechanical Engineering
Russian Federation

Aleksandr S. Smirnov

23, prosp. Gagarina, Nizhny Novgorod, 603022

11A, prosp. Sverdlova, Dzerzhinsk, Nizhegorodskaya obl., 606002



References

1. Sahin Y. Recent progress in processing of tungsten heavy alloys / J. Powder Technol. 2014. Vol. 3 – 4. P. 1 – 22. DOI: 10.1155/2014/764306

2. Povarova K. B., Makarov P. V., Ratner A. D., et al. Heavy alloys of the VNZh-90 type. I. Influence of alloying and modes of tungsten powders production on their structure, microstructure and properties of sintered alloys / Metally. 2002. No. 4. P. 39 – 48 [in Russian].

3. German R. M. Sintered tungsten heavy alloys: Review of microstructure, strength, densification, and distortion / Int. J. Refractory Metals Hard Mater. 2022. Vol. 108. Art. ID 105940. DOI: 10.1016/j.ijrmhm.2022.105940

4. Kunčická L., Kocich R., Klečková Z. Effects of sintering conditions on structures and properties of sintered tungsten heavy alloy / Materials. 2020. Vol. 13. No. 10. P. 2338. DOI: 10.3390/ma13102338

5. Kiran U., Rao A., Sankaranarayana M., et al. Swaging and heat treatment studies on sintered 90W-6Ni-2Fe-2Co tungsten heavy alloy / Int. J. Refractory Metals Hard Mater. 2012. Vol. 33. P. 113 – 121. DOI: 10.1016/j.ijrmhm.2012.03.003

6. Macháčková A., Krátká L., Petrmichl R., et al. Affecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature / Materials. 2019. Vol. 12. No. 24. P. 4200. DOI: 10.3390/ma12244200

7. Fortuna E., Sikorski K., Kurzydlowski K. Experimental studies of oxygen and carbon segregation at the interfacial boundaries of a 90W-7Ni-3Fe tungsten heavy alloy / Mater. Character. 2004. Vol. 52. Nos. 4 – 5. P. 323 – 329. DOI: 10.1016/j.matchar.2004.06.011

8. Mazilkin A. A., Straumal B. B., Protasova S. G., et al. Pseudopartial wetting of W/W grain boundaries by the nickel-rich layers / Mater. Lett. 2017. Vol. 192. P. 101 – 103. DOI: 10.1016/j.matlet.2016.12.049

9. Das J., Rao G., Pabi S. Microstructure and mechanical properties of tungsten heavy alloys / Mater. Sci. Eng. A. 2010. Vol. 527. Nos. 29 – 30. P. 7841 – 7847. DOI: 10.1016/j.msea.2010.08.071

10. Sirotinkin V. P., Mikhailova A. B., Shamrai V. F., et al. Analysis of the microstructure of tungsten nanopowders by the Williamson – Hall method on a diffractometer with a high-speed detector / Industr. Lab. Mater. Diagn. 2013. Vol. 79. No. 6. P. 25 – 28 [in Russian].

11. Kiran U., Venkat S., Rishikesh B., et al. Effect of tungsten content on microstructure and mechanical properties of swaged tungsten heavy alloys / Mater. Sci. Eng. A. 2013. Vol. 582. P. 389 – 396. DOI: 10.1016/j.msea.2013.06.041

12. Haag IV J., Wang J., Edwards D., et al. A boundary-based approach to the multiscale microstructural characterization of a W-Ni-Fe tungsten heavy alloy / Scripta Mater. 2022. Vol. 213. P. 114587. DOI: 10.1016/j.scriptamat.2022.114587

13. Sirotinkin V. P., Mikhailova A. B., Shamrai V. F., et al. Determination of structural characteristics of tungsten nanopowders by profile of one x-ray diffraction peak by WINFIT program / Industr. Lab. Mater. Diagn. 2014. Vol. 80. No. 4. P. 33 – 37 [in Russian].

14. El-Guebaly L., Setyawan W., Henager Jr. C., et al. Neutron activation and radiation damage assessment for W-Ni-Fe tungsten heavy alloys with variable Ni content / Nuclear Mater. Energy. 2021. Vol. 29. P. 101092. DOI: 10.1016/j.nme.2021.101092

15. Neu R., Maier H., Balden M., et al. Investigations on tungsten heavy alloys for use as plasma facing material / Fusion Eng. Design. 2017. Vol. 124. P. 450 – 454. DOI: 10.1016/j.fusengdes.2017.01.043

16. Laas T., Laas K., Paju J., et al. Behaviour of tungsten alloy with iron and nickel under repeated high temperature plasma pulses / Fusion Eng. Design. 2020. Vol. 151. P. 111408. DOI: 10.1016/j.fusengdes.2019.111408

17. Maier H., Neu R., Schwarz-Selinger T., et al. Tungsten heavy alloy: An alternative plasma-facing material in terms of hydrogen isotope retention / Nuclear Fusion. 2020. Vol. 60. No. 12. P. 126044. DOI: 10.1088/1741-4326/abb890

18. An Q., Elshafiey A., Huang L., et al. Plasma and X-ray radiation-induced damage mechanisms in a tungsten heavy alloy / J. Nuclear Mater. 2020. Vol. 539. P. 152325. DOI: 10.1016/j.jnucmat.2020.152325

19. Haag IV J. V., Edwards D. J., Henager Jr. C. H., et al. Characterization of ductile phase toughening mechanisms in a hot-rolled tungsten heavy alloy / Acta Mater. 2021. Vol. 204. P. 116523. DOI: 10.1016/j.actamat.2020.116523

20. Krasovskii P. V., Samokhin A. V., Fadeev A. A., et al. Alloying effects and composition inhomogeneity of plasma-created multimetallic nanopowders: a case study of the W-Ni-Fe ternary system / J. Alloys Compounds. 2018. Vol. 750. P. 265 – 275. DOI: 10.1016/j.jallcom.2018.03.367

21. Gryaznov M., Samokhin A., Chuvildeev V., et al. Method of W-Ni-Fe composite spherical powder production and the possibility of its application in Selective Laser Melting technology / Metals. 2022. Vol. 12. No. 10. P. 1715. DOI: 10.3390/met12101715

22. Samokhin A. V., Fadeev A. A., Alekseev N. V., et al. Spheroidization of tungsten nanopowder microgranules in thermal plasma of electric arc discharge / Persp. Mater. 2023. No. 12. P. 71 – 82 [in Russian].

23. Savenko V. I., Toporov Yu. P., Chernyshev V. V., et al. Microstructure and properties of surface-modified tungsten powders mechanically activated in different media / Fiz. Met. Metalloved. 2017. Vol. 118. No. 11. P. 1121 – 1128 [in Russian]. DOI: 10.7868/s0015323017110134

24. Malkin A. I., Fomkin A. A., Klyuev V. A., et al. Effect of mechanoactivation on adsorption properties of powdered tungsten / Fizikokhim. Poverkh. Zashch. Mater. 2015. Vol. 51. No. 1. P. 49 [in Russian]. DOI: 10.7868/s0044185615010088

25. Ageev E. V., Latypov R. A. Composition, structure and properties of electrical discharge powders obtained from waste VNZh alloy in distilled water / Élektrometallurgiya. 2020. No. 5. P. 35 – 40 [in Russian]. DOI: 10.31044/1684-5781-2020-0-5-35-40

26. Dorofeev A. A., Samokhin A. V., Fadeev A. A., et al. Investigation of granulation process of nanopowder of W-Ni-Fe system by spray drying method / Fiz. Khim. Obrab. Mater. 2022. No. 6. P. 54 – 69 [in Russian]. DOI: 10.30791/0015-3214-2022-6-54-69

27. Manikandan R., Raja Annamalai A. Tungsten heavy alloys processing via microwave sintering, spark plasma sintering, and additive manufacturing: a review / Processes. 2022. Vol. 10. No. 11. P. 2352. DOI: 10.3390/pr10112352

28. Chuvildeev V. N., Nokhrin A. V., Boldin M. S., et al. Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W-Ni-Fe tungsten heavy alloys / J. Alloys Compounds. 2019. Vol. 773. P. 666 – 688. DOI: 10.1016/j.jallcom.2018.09.176

29. Lantsev E. A., Malekhonova N. V., Nokhrin A. V., et al. Electric-pulse («spark») plasma sintering of tungsten and W + + 5 % Ni nanopowders produced by high-energy mechanoactivation method / Zh. Tekhn. Fiz. 2023. Vol. 93. No. 11. P. 1550 – 1560 [in Russian]. DOI: 10.61011/jtf.2023.11.56486.143-23

30. Chen H., Ye L., Han Y., Chen C., et al. Additive manufacturing of W-Fe composites using laser metal deposition: Microstructure, phase transformation, and mechanical properties / Mater. Sci. Eng. A. 2021. Vol. 811. P. 141036. DOI: 10.1016/j.msea.2021.141036

31. Chen H., Zi X., Han Y., et al. Microstructure and mechanical properties of additive manufactured W-Ni-Fe-Co composite produced by selective laser melting / Int. J. Refr. Metals Hard Mater. 2020. Vol. 86. P. 105111. DOI: 10.1016/j.ijrmhm.2019.105111

32. Gryaznov M. Yu., Samokhin A. V., Chuvildeev V. N., et al. Preparation of composite powder of W-Ni-Fe system with spherical shape of particles and study of possibility of its use in the technology of layer-by-layer laser fusion / Fiz. Khim. Obrab. Mater. 2022. No. 3. P. 54 – 66 [in Russian]. DOI: 10.30791/0015-3214-2022-3-54-66

33. Bragov A. M., Chuvildeev V. N., Melekhin N. V., et al. Dynamic strength of VNZh-90 heavy alloy obtained by electropulse plasma sintering method / Fiz. Mezomekh. 2018. Vol. 21. No. 2. P. 96 – 102 [in Russian]. DOI: 10.24411/1683-805x-2018-12010

34. Povarova K. B., Makarov P. V., Shamshev K. N., et al. Development of heavy alloys based on refractory metals (W, Mo, Re) as materials with high shock wave resistance / Metally. 2004. No. 1. P. 120 – 130 [in Russian]. DOI: 10.24411/1683-805x-2018-12010

35. Ishenko A. N., Afanaseva S. A., Belov N. N., et al. Features of fracture of strikers made of porous tungsten-based alloy with reinforcing filler in interaction with armor barriers / Zh. Tekhn. Fiz. 2020. Vol. 90. No. 3. P. 434 – 440 [in Russian]. DOI: 10.21883/jtf.2020.03.48928.226-19

36. Trunin I. R., Tereshkina I. A., Podurets A. M., et al. Detachment fracture of WNiFe-90 alloy under shock wave loading / Prikl. Mekh. Tekhn. Fiz. 2019. Vol. 60. No. 5(357). P. 194 – 201 [in Russian]. DOI: 10.15372/pmtf20190520

37. Podurets A. M., Tkachenko M. I., Balandina A. N., et al. Features of deformation and fracture of tungsten pseudo-alloys with nickel and iron under impact loading / Fiz. Met. Metalloved. 2022. Vol. 123. No. 11. P. 1242 – 1247 [in Russian]. DOI: 10.31857/s0015323022100187

38. Strunz P., Kunčická L., Beran P., et al. Correlating microstrain and activated slip systems with mechanical properties within rotary swaged WNiCo pseudoalloy / Materials. 2020. Vol. 13. No. 1. P. 208. DOI: 10.3390/ma13010208

39. Gero R., Borukhin L., Pikus I. Some structural effects of plastic deformation on tungsten heavy metal alloys / Mater. Sci. Eng. A. 2001. Vol. 302. No. 1. P. 162 – 167. DOI: 10.1016/s0921-5093(00)01369-1

40. Kopylov V. I., Chuvildeev V. N., Nokhrin A. V., et al. Investigation of strength, relaxation and corrosion resistance of ultrafine-grained austenitic 08X18H10T steel obtained by RKU pressing. I. Investigation of relaxation properties and resistance to intergranular corrosion / Metally. 2023. No. 5. P. 44 – 59 [in Russian]. DOI: 10.31857/s0869573323050063

41. Chuvildeev V. N., Nokhrin A. V., Myshlyaev M. M., et al. Influence of return and recrystallization processes on Hall – Petch ratio parameters in submicrocrystalline metals. I. Experimental studies / Metally. 2018. No. 1. P. 81 – 102 [in Russian].

42. Chuvildeev V. N., Shadrina Ya. S., Nokhrin A. V., et al. Investigation of thermal stability of structure and mechanical properties of submicrocrystalline aluminum alloys Al – 0.5% Mg – Sc / Metally. 2021. No. 1. P. 10 – 28 [in Russian].

43. Chuvildeev V. N., Nokhrin A. V., Kopylov V. I., et al. Investigation of mechanical properties and corrosion resistance of fine-grained aluminum alloys Al-Zn with reduced zinc content / J. Alloys Compounds. 2022. Vol. 891. P. 162110. DOI: 10.1016/j.jallcom.2021.162110

44. Nokhrin A. V., Malekhonova N. V., Chuvildeev, et al. Effect of high-energy ball milling time on the density and mechanical properties of W – 7% Ni – 3% Fe alloy / Metals. 2023. Vol. 13. No. 8. P. 1432. DOI: 10.3390/met13081432

45. Geminov V. N., Rakhshtadt A. G. Microplasticity. — Moscow: Metallurgiya, 1972. — 342 p. [in Russian].

46. Golovin S., Pushkar A. Microplasticity and fatigue of metals. — Moscow: Metallurgiya. 1980. — 240 p. [in Russian].

47. Dudarev E. F. Microplastic deformation and yield strength of polycrystals. — Tomsk: Tomskiy universitet, 1988. — 254 p. [in Russian].


Review

For citations:


Melekhin N.V., Chupriyanova V.D., Smirnov A.S. Study of microplastic deformation of W-Ni-Fe tungsten alloys during compression tests. Industrial laboratory. Diagnostics of materials. 2025;91(8):75-84. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-8-75-84

Views: 25


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)