

Study of influence of grinding and centrifugation parameters on the particle size and separation of agglomerates of aluminum oxide
https://doi.org/10.26896/1028-6861-2025-91-9-36-43
Abstract
Using ceramic technology can lead to the formation of rigid agglomerates of particles, which hinder uniform sintering and the production of high-density ceramics. This work presents the results of a study on α-Al2O3 powder. The main focus was on the influence of milling and centrifugation parameters on the final particle size when adding NH4OH for electrostatic stabilization, which prevents agglomeration. The analysis of the dependence of the centrifugate yield on centrifugation conditions (number of revolutions, content of α-Al2O3) allows for the optimization of technological parameters to achieve conditions for the highest yield of particles of a specified size. Particle size was assessed using dynamic light scattering, which also enables the determination of the particle size distribution, necessary for studying material properties. Additionally, the grinding time required to achieve a particle size of 0.4 μm was calculated, and the value of the grinding rate constant was determined. Furthermore, for particles around 0.4 μm in size, the fulfillment of sedimentation-diffusion equilibrium without centrifugation was evaluated. The obtained results can be used to improve methods for producing high-quality α-Al2O3 powder, which is widely used in various industries (in the production of ceramics, electronics, catalysts, etc.).
About the Authors
A. A. AtopshevRussian Federation
Andrey A. Atopshev
23, prosp. Gagarina, Nizhny Novgorod, 603022
M. S. Boldin
Russian Federation
Maxim S. Boldin
23, prosp. Gagarina, Nizhny Novgorod, 603022
M. D. Nazmutdinov
Russian Federation
Marsel D. Nazmutdinov
23, prosp. Gagarina, Nizhny Novgorod, 603022
T. S. Pozdova
Russian Federation
Tatyana S. Pozdova
23, prosp. Gagarina, Nizhny Novgorod, 603022
References
1. Liu Y., Zhang X., Kong C., et al. Mechanical properties of a high-strength ultrafine-grained Cu-Al2O3 nanocomposite at elevated temperatures / Mater. Lett. 2025. Vol. 382. P. 137865. DOI: 10.1016/j.matlet.2024.137865
2. Kukharenko A. I., Cholakh S. O., Kurmaev E. Z., Zhidkov I. S. Interactions in Al2O3 — graphene oxide composite: XPS study / Analytics and Control. 2024. Vol. 28. No. 1. P. 54 – 56. DOI: 10.15826/analitika.2024.28.1.006
3. Shcherbak G. V., Murashov A. A., Smetanina K. E., et al. Study of the anisotropy of the properties of the ceramic cutting insert obtained by the lcm technology of 3D printing from the composite Al2O3/ZrO2 (ZTA) / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 11. P. 64 – 69 [in Russian]. DOI: 10.26896/1028-6861-2021-87-11-64-69
4. Mahayni Y., Maurer L., Baumeister I., et al. Batch and continuous synthesis of well-defined Pt/Al2O3 catalysts for the dehydrogenation of homocyclic LOHCs / Chem. Cat. Chem. 2025. e202401762. DOI: 10.1002/cctc.202401762
5. Weidner E., Dubadi R., Samojeden B., et al. Mechanochemical synthesis of alumina-based catalysts enriched with vanadia and lanthana for selective catalytic reduction of nitrogen oxides / Sci. Rep. 2022. Vol. 12. No. 21294. DOI: 10.1038/s41598-022-25869-w
6. Gao H., Li Z., Zhao P. Green synthesis of nanocrystalline α-Al2O3 powders by both wet-chemical and mechanochemical methods / Mod. Phys. Lett. B. 2018. Vol. 32. P. 1850109. DOI: 10.1142/S0217984918501099
7. Kamata K., Mochizuki T., Matsumoto S., et al. Preparation of submicrometer Al2O3 powder by gas-phase oxidation of tris(acetylacetonato) alumina (III) / J. Am. Ceram. Soc. 1985. Vol. 68. P. 193 – 194. DOI: 10.1111/j.1151-2916.1985.tb10179.x
8. Lukić S., Stijepović I., Ognjanović S., Srdic V. Chemical vapour synthesis and characterisation of of Al2O3 nanopowders / Ceram. Int. 2015. Vol. 41. P. 3653 – 3658. DOI: 10.1016/j.ceramint.2014.11.034
9. Suaebah E., Yunata E., Wijaya A. The sintering temperature effect of alumina (Al2O3) ceramic using the sol-gel method / J. Phys.: Conf. Ser. 2024. Vol. 2900. P. 1 – 7. DOI: 10.1088/1742-6596/2900/1/012044
10. Milani S. S., Kakroudi M. G., Vafa N. P., et al. Properties of alumina sol prepared via inorganic route / Ceram. Int. 2020. Vol. 46. P. 9492 – 9497. DOI: 10.1016/j.ceramint.2019.12.210
11. Chen H., Li B., Yang X., et al. The spheroidization process of micron-scaled α-Al2O3 powder in hydrothermal method / Ceram. Int. 2021. Vol. 47. P. 22911 – 22917. DOI: 10.1016/j.ceramint.2021.05.004
12. Li Y., Wang W., Qin F., et al. Synthesis of monodisperse spherical nano alumina by hydrothermal method and its mechanism study / Ceram. Int. 2024. Vol. 50. P. 39467 – 39474. DOI: 10.1016/j.ceramint.2024.07.323
13. Nasir J., Schmidt F., Menzel F., Gunne J. Structure and phase changes of alumina produced by flame hydrolysis / Dalton Trans. 2024. Vol. 53. P. 14246 – 14257. DOI: 10.1039/d4dt01809e
14. Gautham M. G., Rao B. C., Ramakrishna P. A. Combustion synthesis of alumina with possible co-generation of power / Int. J. Hydrogen Energy. 2021. Vol. 46. P. 12682 – 12692. DOI: 10.1016/j.ijhydene.2021.01.140
15. Wu Y., Li L., Yang X. Coprecipitation synthesis of Si-modified mesoporous alumina with high thermal stability from coal fly ash / Chem. Pap. 2020. Vol. 74. P. 2537 – 2543. DOI: 10.1007/s11696-020-01101-9
16. Lafficher R., Digne M., Salvatori F., et al. Ammonium Aluminium carbonate hydroxide NH4Al(OH)2CO3 as an alternative route for alumina preparation: comparison with the classical boehmite precursor / Powder Technol. 2017. Vol. 320. P. 565 – 573. DOI: 10.1016/j.powtec.2017.07.0080
17. Lee H. M., Huang C. Y., Wang C. J. Forming and sintering behaviors of commercial α-Al2O3 powders with different particle size distribution and agglomeration / J. Mater. Process. Technol. 2009. Vol. 209. P. 714 – 722. DOI: 10.1016/j.jmatprotec.2008.02.047
18. Dynys F. W., Halloran J. W. Influence of Aggregates on Sintering / J. Am. Ceram. Soc. 1984. Vol. 67. P. 596 – 601. DOI: 10.1111/J.1151-2916.1984.tb19601.x
19. Saghir M., Umer M., Ahmed A., et al. Effect of high energy ball milling and low temperature densification of plate-like alumina powder / Powder Technol. 2021. Vol. 383. P. 84 – 92. DOI: 10.1016/j.powtec.2021.01.026
20. Reid C. B., Forrester J. S., Goodshaw H. J., et al. A study in the mechanical milling of alumina powder / Ceram. Int. 2008. Vol. 34. P. 1551 – 1556. DOI: 10.1016/j.ceramint.2007.05.003
21. Dash R., Besra L., Dash S. Morphological studies of single-phase alumina fabricated by wet milling method / Indian J. Chem. Technol. 2024. Vol. 31. P. 26 – 30. DOI: 10.56042/ijct.v31i1.5500
22. Franks G. V., Healy T. W. ζ Potential of Nanoparticle Suspensions: Effect of Electrolyte Concentration, Particle Size, and Volume Fraction / J. Am. Ceram. Soc. 2008. Vol. 91. P. 1141 – 1147. DOI: 10.1111/j.1551-2916.2008.02277.x
23. Gupta P., Mundra R., Jha S. Stabilization of Al2O3 dispersed slurry by controlling pH / Colloids Surf. A: Physicochem. Eng. Asp. 2024. Vol. 685. 133251. DOI: 10.1016/j.colsurfa.2024.133251
24. Grishina E. P., Kudryakova N. O., Ramenskaya L. M. Characterization of the properties of thin Al2O3 films formed on structural steel by the sol-gel method / Condens. Matter Interphases. 2020. Vol. 22. P. 39 – 47.
25. Garshin A. P., Gropyanov V. M., Zaitsev G. P., Semenov S. S. Ceramics for mechanical engineering. — Moscow: Nauchtekhlitizdat, 2003. — 384 p. [in Russian].
26. Tretyakov V. I. Fundamentals of metal science and technology of production of sintered hard alloys. — Moscow: Metallurgiya, 1976. — 528 p. [in Russian].
Review
For citations:
Atopshev A.A., Boldin M.S., Nazmutdinov M.D., Pozdova T.S. Study of influence of grinding and centrifugation parameters on the particle size and separation of agglomerates of aluminum oxide. Industrial laboratory. Diagnostics of materials. 2025;91(9):36-43. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-9-36-43