

Corrosion equipment for fatigue testing of bioresorbable magnesium alloys
https://doi.org/10.26896/1028-6861-2025-91-9-75-80
Abstract
Currently, there is no generally accepted standard setup for measurements the fatigue limits of biomedical magnesium alloy samples in corrosive environments. Usually every research group uses assemble its own testing system, which does not always take into account many technical factors that significantly affect the final result of the experiment. In this paper, we propose a setup that can be assembled on the basis of a standard fatigue machine for measurements the corrosion-fatigue durability of bioresorbable magnesium alloys in various physiological solutions. It’s main components include: a testing machine with a slot plate required for rigid attachment of the chamber; polyamide grips providing galvanic isolation; a peristaltic pump for pumping the medical solution used; an ionometer connected to a computer to record changes in pH and temperature; a thermostat to maintain the temperature in the chamber within a given range; an additional solution fed into the chamber through a needle using a small peristaltic pump when a given pH level is exceeded, which allows maintaining the pH within the acceptable range of values. The setup uses corset-type samples, although other options are also acceptable, and provides the ability to install a camera to visualize corrosion processes on witness samples. The test system allows achieving good repeatability and reliability of the obtained results, which was experimentally verified and confirmed on magnesium alloy MA14 of different melts, selected as a model. The proposed setup can be used to assess the fatigue life of magnesium alloys for medical purposes. It is not difficult to implement in ordinary factory laboratory conditions.
About the Authors
M. L. LinderovRussian Federation
Mikhail L. Linderov
14, Belorusskaya ul., Tolyatti, 445020
A. I. Brilevsky
Russian Federation
Alexander I. Brilevsky
14, Belorusskaya ul., Tolyatti, 445020
D. L. Merson
Russian Federation
Dmitry L. Merson
14, Belorusskaya ul., Tolyatti, 445020
References
1. Makhutov N. A. Evolution of laboratory researches and diagnostics of materials / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 1. P. 5 – 13 [in Russian]. DOI: 10.26896/1028-6861-2022-88-1-i-5-13
2. Makhutov N. A. Evolution of technical diagnostics in the academic and industrial laboratories / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 10. P. 52 – 54 [in Russian]. DOI: 10.26896/1028-6861-2023-89-10-52-54
3. Makhutov N. A. Topical security issues of critical and strategic facilities / Industr. Lab. Mater. Diagn. 2018. Vol. 84. No. 1. P. 5 – 9 [in Russian]. DOI: 10.26896/1028-6861-2018-84-1-i-05-09
4. Makhutov N. A., Gadenin M. M. Unification of the calculation methods and tests for strength, life time and crack resistance / Industr. Lab. Mater. Diagn. 2019. Vol. 85. No. 10. P. 47 – 54 [in Russian]. DOI: 10.26896/1028-6861-2019-85-10-47-54
5. Barashkov V. A., Koposova T. S., Belykh A. I., et al. Chemical elements in the human body: reference materials. — Arkhangelsk: PSU Publishing Center, 2001. — 44 p. [in Russian].
6. Merson D. L., Brilevsky A. I., Merson E. D., et al. Providing the required set of mechanical, biomedical and operational properties of bioresorbable implants based on magnesium / Abstracts of the report of the International Conference. — Tomsk: Institute of Strength Physics and Materials Science, 2024. P. 470 [in Russian].
7. Hussain C. M., Verma C., Aslam J., et al. Handbook of Corrosion Engineering: Modern Theory, Fundamentals and Practical Applications. — Elsevier, 2023. — 459 p.
8. McEvily A. J. Metal Failures: Mechanisms, Analysis, Prevention. — John Wiley & Sons, 2002. — 324 p.
9. Li Y., Wang J., Sheng K., et al. Optimizing Structural Design on Biodegradable Magnesium Alloy Vascular Stent for reducing strut thickness and raising radial strength / Mater. Design. 2022. Vol. 220. P. 110843. DOI: 10.1016/j.matdes.2022.110843
10. Harandi S. E., Singh Raman R. K. Appropriate Mechanochemical Conditions for Corrosion-Fatigue Testing of Magnesium Alloys for Temporary Bioimplant Applications / J. Minerals Met. Mater. Soc. 2015. Vol. 67. No. 5. P. 1137 – 1142. DOI: 10.1007/s11837-015-1387-7
11. Harandi S. E., Singh Raman R. K. Corrosion fatigue of a magnesium alloy under appropriate human physiological conditions for bio-implant applications / Eng. Fract. Mech. 2017. Vol. 186. P. 134 – 142. DOI: 10.1016/j.engfracmech.2017.09.031
12. Liu M., Wang J., Zhu S., et al. Corrosion fatigue of the extruded Mg – Zn – Y – Nd alloy in simulated body fluid / J. Magnesium Alloys. 2020. Vol. 8. No. 1. P. 231 – 240. DOI: 10.1016/j.jma.2019.09.009
13. Linderov M., Brilevsky A., Merson D., et al. On the Corrosion Fatigue of Magnesium Alloys Aimed at Biomedical Applications: New Insights from the Influence of Testing Frequency and Surface Modification of the Alloy ZK60 / Materials (Basel). 2022. Vol. 15. No. 2. DOI: 10.3390/ma15020567
14. Linderov M., Vasilev E., Merson D., et al. Corrosion fatigue of fine grain Mg – Zn – Zr and Mg – Y – Zn alloys / Metals (Basel). 2018. Vol. 8. No. 1. DOI: 10.3390/met8010020
15. Merson E. D., Poluyanov V. A., Myagkikh P. N., et al. The effect of testing conditions on stress corrosion cracking of biodegradable magnesium alloy ZK60 / Lett. Mater. 2022. Vol. 12. No. 3. P. 177 – 183. DOI: 10.22226/2410-3535-2022-3-177-183
16. Kashin O. A., Krukovskii K. V., Bobrov D. I., et al. Device for determination of the fatigue durability of intravascular stents / Industr. Lab. Mater. Diagn. 2019. Vol. 85. No. 11. P. 62 – 68 [in Russian]. DOI: 10.26896/1028-6861-2019-85-11-62-68
17. Kovacevic S., Ali W., Martínez-Pañeda E., et al. Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications / Acta Biomater. 2023. Vol. 164. P. 641 – 658. DOI: 10.1016/j.actbio.2023.04.011
Review
For citations:
Linderov M.L., Brilevsky A.I., Merson D.L. Corrosion equipment for fatigue testing of bioresorbable magnesium alloys. Industrial laboratory. Diagnostics of materials. 2025;91(9):75-80. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-9-75-80