Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Determination of the Grain-Size Distribution of Zirconia Based Powders by the Methods of Static Laser Scattering and Optical Microscopy

Abstract

Dispergation conditions of zirconia doped with 3 % mol yttrium oxide are specified. Grain-size distribution of the power particles is determined using static laser scattering and optical microscopy. Electrophoresis with titration is used for measuring the dependence of zeta-potential of zirconia suspension on öl value. The effect of the acidity on the stability of suspension during measurement is considered. It is shown that stable suspension can be obtained by shifting pH value of dispersion media both to acidic or alkali regions and also by adding surface active substances (e.g., Dolapix CE 64).

About the Authors

R. A. Mironov
ОНПП «Технология» им. А. Г. Ромашина
Russian Federation


M. O. Zabezhaylov
ОНПП «Технология» им. А. Г. Ромашина
Russian Federation


V. S. Yakushkina
ОНПП «Технология» им. А. Г. Ромашина
Russian Federation


M. Yu. Rusin
ОНПП «Технология» им. А. Г. Ромашина
Russian Federation


References

1. Lange F. F. Powder processing science and technology for increased reliability / J. Am. Ceram. Soc. 1989. Vol. 72. P. 3 - 15.

2. Merkus H. Particle size measurements. Springer, 2008. P. 534.

3. Allen T. Powder Sampling and Particle Size Determination. Elsevier, 2003. P. 660.

4. Wu T. Y. Advances in ultrasound technology for environmental remediation. Chapter 2 Theory and fundamentals of ultrasound. - Springer, 2013. Briefs in green chem. for sustainability. P. 120.

5. Wu J., Nyborg W. L. Ultrasound, cavitation bubbles and their interaction with cells / Adv. Drug Delivery Rev. 2008. Vol. 60. P. 1103 - 1116.

6. Новик А. В. Исследование процесса ультразвукового диспергирования керамических материалов в жидких средах: авт. реф. дисс.. канд. техн. наук. - СПб.: ЛЭТИ, 2013.

7. Prakash Rao S. et al. Dispersion studies of sub-micron zirconia using Dolapix CE-64 / Colloids and surfaces A: Physicochem. Eng. Aspects. 2007. Vol. 302. P. 553 -558.

8. Wen-Cheng J. Wei. Electrokinetic properties of colloidal zirconia powders in aqueous suspension / J. Am. Ceram. Soc. 1999. Vol. 82. N12. P. 3385 -3392.

9. Greenwood R., Kendall K. Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis / J. Eur. Ceram. Soc. 1999. Vol. 19. P. 479 - 488.

10. Stankovic J. B. et al. The influence of chemical and thermal treatment on the point of zero charge of hydrous zirconium oxide / J. Serb. Chem. Soc. 2013. Vol. 78. N 7. P. 987 - 995.

11. Allen T. Powder sampling and particle size measurement. Vol. 2. - London: Chapman & Hall, 1997. P. 251.

12. Kosmulski M. Chemical properties of material surfaces / Surfactant science series. 2001. Vol. 102. P. 753.

13. Якушкина В. C., Кораблева Е. А., Викулин В. В., Русин М. Ю., Саванина H. Н. Разработка наноструктурной керамики на основе диоксида циркония / Третья всероссийская конференция по наноматериалам «Нано 2009»: Тезисы докладов. - Екатеринбург: Уральское издательство, 2009. С. 808.


Review

For citations:


Mironov R.A., Zabezhaylov M.O., Yakushkina V.S., Rusin M.Yu. Determination of the Grain-Size Distribution of Zirconia Based Powders by the Methods of Static Laser Scattering and Optical Microscopy. Industrial laboratory. Diagnostics of materials. 2016;82(11):32-36. (In Russ.)

Views: 491


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)