Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

СОВРЕМЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В СТОЧНЫХ ВОДАХ (ОБЗОР)

Полный текст:

Аннотация

Необходимость контроля качества сточных вод и их специфические особенности требуют наличия, развития и совершенствования приборной аналитической базы и обеспечения методами определения загрязнителей, в том числе тяжелых металлов. В обзорной статье охарактеризованы представляющие наибольший практический интерес методы элементного атомно-абсорбционного, атомно-эмиссионного и масс-спектрального экоаналитического контроля сточных вод. Особое внимание уделено методам с использованием операций по разделению и концентрированию примесей тяжелых металлов.

Об авторах

О. А. Дальнова
Национальный исследовательский технологический университет «МИСиС»; Государственный научно-исследовательский и проектный институт «Гиредмет»
Россия


Г. И. Бебешко
Государственный научно-исследовательский и проектный институт «Гиредмет»
Россия


В. В. Еськина
Национальный исследовательский технологический университет «МИСиС»; Государственный научно-исследовательский и проектный институт «Гиредмет»
Россия


В. Б. Барановская
Институт общей и неорганической химии им. Н. С. Курнакова РАН
Россия


Ю. А. Карпов
Институт общей и неорганической химии им. Н. С. Курнакова РАН
Россия


Список литературы

1. Akinin N. I. Industrial ecology: the principles, approaches, technical solutions. - Dolgoprudnyi: Izd. dom «Intellekt», 2011. - 312 p. [in Russian].

2. Danilovich D. A., Dovlatova E. V. Proposals to change the legislative framework of rationing of water utilities and their customers wastewater discharges / Vodosnabzh. San. Tekhn. 2012. N 10. P. 5 - 9 [in Russian].

3. Kutseva N. K., Kartashova A. V., Chamaev A. V. Water quality standards: the analyst’s view / Metody Otsenki Sootv. 2012. N 3. P. 4 - 9 [in Russian].

4. Gnipov A. V., Mazaev V. T., Khromchenko Ya. L. About the control of drinking water quality and composition of the wastewater in the new regulations / Vodosnabzh. San. Tekhn. 2015 N 4. P. 4 - 11 [in Russian].

5. Mur D. V., Rammamutri S. Heavy metals in natural waters. - Moscow: Mir, 1987. - 286 p. [Russian translation].

6. Ivanov V. V. Environmental geochemistry of elements. Book 1. - Moscow: Nauka, 1994. P. 16 - 17 [in Russian].

7. Yusfin Yu. S., Leont’ev L. I., Chernousov P. I. Industry and environment. - Moscow: Akademkniga, 2002. - 469 p. [in Russian].

8. Gron’ V. A., Korostovenko V. V., Kaplichenko N. M. Monitoring of pollution of the hydrosphere by metallurgical enterprise / Mezhdunar. Zh. Éksp. Obraz. 2013. N 10. Part 2. P. 309 - 311 [in Russian].

9. PND F 14.1:2.214-06 (FR.1.31.2007.03809). Quantitative chemical analysis of water. Methods of measurement of mass concentration of iron, cadmium, cobalt, manganese, nickel, copper, zinc, chromium and lead in samples of natural and waste water by flame atomic absorption spectrometry. - Moscow, 2006. - 22 p. [in Russian].

10. PND F 14.1:2.4.253-09. Method for determination of mass concentration of aluminum, barium, beryllium, vanadium, cadmium, cobalt, manganese, copper, molybdenum, arsenic, nickel, lead, selenium, silver, strontium, titanium, chromium, zinc in the samples of natural and waste waters by atomic absorption spectrometry with electrothermal atomization using atomic absorption spectrometry modifications MGA-915, 915M, 915 MD [in Russian].

11. Zolotov Yu. A., Tsizin G. I., Dmitrienko S. G., Morosanova E. I. Sorbtion concentration of microcomponents from solution. Application in inorganic analysis. - Moscow: Nauka, 2010. - 564 p. [in Russian].

12. Vedat Y., Senol K. Determination of some trace metals by FAAS after solid-phase extraction with Amberlite XAD-1180/TAN chelating resin / Anal. Sci. 2012. Vol. 28. N5.P.515- 21.

13. Sert R., Hol A., Kartal A. A., et al. Simultaneous solid phase chelate extraction for ultratrace determination of copper, nickel, and zinc by microsample injection system coupled flame atomic absorption spectrometry / Anal. Lett. 2013. Vol. 46. N 16. P. 2570 - 2582.

14. Mori M., Suzuki T., Sugita Ts., et al. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry / Anal. Chim. Acta. 2014. Vol. 840. P. 42 - 48.

15. Meng L., Chen C., Yang Y. Suspension dispersive solid phase extraction for preconcentration and determination ofcobalt, copper, and nickel in environmental water by flame atomic absorption spectrometry / Anal. Lett. 2015. Vol. 48. N 3. P. 453 - 463.

16. Shemshadi R. Sh., Zeinalov N. A., Éfendiev A. A., et al. Determination of cadmium and zinc in waters by flame atomic absorption spectrometry after cloud-point extraction / J. Anal. Chem. 2012. Vol. 67. N 6. P. 577 - 580.

17. Babuev M. A., Basargin N. N., Arslanbeikov R. Kh., et al. Sorption-atomic-absorption determination of cadmium (II) in natural waters / Zavod. Lab. Diagn. Mater. 2011. Vol. 77. N 8.P. 3 - 5 [in Russian].

18. Anthemidis A. N., Paschalidou M. Unmodified multi-walled carbon nanotubes as sorbent material in flow injection on-line sorbent extraction preconcentration system for cadmium determination by flame atomic spectrometry / Anal. Lett. 2012. Vol. 45. N 9. P. 1098 - 1110.

19. Doroshchuk V. A., Kulichenko S. A. Preconcentration of cadmium with OP-10 nonionic surfactant phases at the cloud point / J. Anal. Chem. 2005. Vol. 60. N 5. P. 400 - 403.

20. Hazer O., Demir D. Speciation of chromium in water samples by solid-phase extraction on a new synthesized adsorbent / Anal. Sci. 2013. Vol. 29. N 7. P. 29 - 34.

21. Baig J., Hol A., Akdogan A., et al. A novel strategy for chromium speciation at ultra-trace level by microsample injection flame atomic absorption spectrophotometry / J. Anal. Atom. Spectrom. 2012. Vol. 27. N 9. P. 1509- 1517.

22. Shah F., Soylak M., Kazi T. G., Afridi H. I. Preconcentration of lead from aqueous solution with activated carbon cloth prior to analysis by flame atomic absorption spectrometry: A multivariate study / J. Anal. Atom. Spectrom. 2013. Vol. 28. N 4. P. 601 - 605.

23. Bai Huahua, Zhou Qingxiang, Xie Guohong, Xiao Junping. Temperature - controlled ionic liquid-liquide-phase microextration for preconcentration of lead from environment samples prior to flame atomic spectrometry / Talanta. 2010. Vol. 80. N 5. P. 1638 - 1642.

24. Aida I., Daryoush A., Ali M., Maryam F. Ultrasond-assisted emulsification microextraction for separation oftrace amounts ofantimony prior to FAAS determination / Microchim. Acta. 2012. Vol. 176. N1-2. P. 185 - 192.

25. Ulusoy H. І., Akzay M., Ulusoy S., Gürkan R. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction / Anal. Chim. Acta. 2011. Vol. 703. N 2. P. 137 - 144.

26. Pourreza N., Ghanemi K. Determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole / J. Hazardous Mater. 2009. Vol. 161. N2-3.P. 982 - 987.

27. Matusiewicz H., Krawczyk M. Determination of total mercury by vapor generation in situ trapping flame atomic absorption spectrometry / Chem. Anal. 2008. Vol. 53. N 6. P. 905 - 925.

28. Oreshkin V. N., Tsizin G. I. Three-chamber atomizer with two zones for the evaporation for atomic absorption analysis of natural waters and slurries / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 10. P. 14 - 18 [in Russian].

29. Oreshkin V. N., Tsizin G. I. Electrothermal atomic absorption determination of elements in natural waters and suspensions after concentrates separation on membrane filters / Zavod. Lab. Diagn. Mater. 2013. Vol. 79. N 3. P. 18 - 20 [in Russian].

30. Donati G. L., Wildman R. B., Jones B. T. A new atomization cell for trace metal determanations by tungsten coil atomic spectrometry / Anal. Chim. Acta. 2011. Vol. 688. N 1. P. 36 - 42.

31. Temerdashev Z. A., Burylin M. Yu., Veligodskii I. M. Electrothermal atomic absorption determination of volatile elements using permanent modifier on a carbonized base / Zavod. Lab. Diagn. Mater. 2009. Vol. 75. N 11. P. 18-22 [inRussian].

32. Safarova V. I., Shaidulina G. F., Mikheeva T. N., et al. Determination of Se, As, Sb, Te, Bi in waste water of mining and concentrating plants using atomic absorption spectroscopy with electrothermal atomizer (AAS-ETA) / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 1. P. 15 - 19 [in Russian].

33. Lopez-Garcfa I., Rivas R. E., Hernandez-Cordoba M. Use of carbon nanotubes and electrothermal atomic absorption spectrometry for the speciation of very low amouts of arsenic and antimony in waters / Talanta. 2011. Vol. 86. P. 52 - 57.

34. Baig J. A., Kazi T. G., Shah A. Q., et al. Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique / Anal. Chim. Acta. 2009. Vol. 651. N 1. P. 57 - 63.

35. Pabieh S., Bagheri M., Planer-Friedrich B. Speciation of arsenite and arsenate by electrothermal AAS flowing ionic liquid dispersive liquidliquid microextraction / Microchim. Acta. 2013. Vol. 180. N5-6. P.415 - 421.

36. Mahnaz G., Reza K.-Z. M., Ali Y. Y. E., Najmeh Y. Preconcentration and speciation of arsenic in water specimens by the combination of solidification of floating drop microextraction and electrothermal atomic absorption spectrometry / Talanta. 2010. Vol. 81. N 1 - 2. P. 197 - 201.

37. Dal’nova O. A., Dmitrieva A. P., Ivannikova N. V., et al. ETAAS determination of mercury in demercuration solutions / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 6.P. 5 - 8 [in Russian].

38. Mojtaba Sh., Saeed H. Ahighly sensitive procedure for determination of ultra trace amounts of molybdenum by graphite furnace atomic absorption specrtometry after dispensive liquid-liquid microextraction / Microchim. Acta. 2010. Vol. 171. N3-4.P. 267 - 273.

39. Mashkoure N. N., Hamed T., Reza A., Shahram S. Speciation and determination of ultra trace amount of inorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry / Anal. Chim. Acta. 2010. Vol. 670. N 1 - 2. P. 18-23.

40. Pupyshev A. A. The high-resolution continuum source atomic absorption spectrometers / Analit. Kontrol’. 2008. Vol. 12. N 3 - 4. P. 64 - 92 [in Russian].

41. Pesa-Vazquez E., Barciela-Alonso M. C., Pita-Calvo C., et al. Use of high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) for sequential multi-element determination of metals in seawater and wastewater samples / J. App. Spectrosc. 2015. Vol. 82. N 4. P. 681 - 686.

42. Lingling Zhao, Shuxian Zhong, Keming Fang, et al. Determination of cadmium (II), cobalt (II), nickel (II), lead (II), zinc (II), and copper (II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry / J. Hazardous Mater. 2012. Vol. 239 -240. P. 206 - 212.

43. Kubrakova I. V., Koshcheeva I. Ya., Pryazhnikov D. V., et al. Microwave synthesis, properties and analytical possibilities of magnetite-based nanoscale sorption materials / J. Anal. Chem. 2014. Vol. 69. N 4. P. 336 - 346 [in Russian].

44. Mashhadizadeh M. H., Karami Z. Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES / J. Hazardous Mater. 2011.Vol. 190. N1-3.P. 1023 - 1029.

45. Faraji M., Yamini Y., Saleh A., et al. Ananoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples / Anal. Chim. Acta. 2010. Vol. 659. N1-2. P. 172 - 177.

46. Guihong Cheng, Man He, Hanyong Peng, Bin Hu. Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determinationby ICP-OES / Talanta. 2012. Vol. 88. P. 507 - 515.

47. Knapek J., Kombrek J., Novotny K. Determination of cadmium, chromium and copper in high salt samples by LA-ICP-OES after electrodeposition-preliminary study / Microchim. Acta. 2010. Vol. 171. N 1 - 2. P. 145 - 150.

48. Schiavo D., Trevizan L. C., Pereira-Filho E. R., Nubrega J. A. Evaluation of the use of multiple lines for determination of metals in water by inductively coupled plasma optical emission spectrometry with axial viewing / Spectrochim. Acta. Part B. 2009. Vol. 64. N 6. P. 544 - 548.

49. Toropov L. I., Mal’tsev A. A., Lyskova T. M. Study of conditions of heavy metals atomic emission determination of in water bodies / Zavod. Lab. Diagn. Mater. 2014. Vol. 80. N 5. P. 19 - 22 [in Russian].

50. Meeravali N. N., Madhavi K., Kumar S. J. A sensitive sequential non-chromatographic speciation analysis of chromium in natural/waste - waters by inductively coupled plasma optical emission spectrometry / J. Anal. Atom. Spectrom. 2011. Vol. 26. N 1. P. 214 - 219.

51. Bashilov A. V., Rogova O. B. Atomic emission spectrometry of microwave plasma: positioning, advantages and limitations / Zavod. Lab. Diagn. Mater. 2014. Vol. 80. N 5. P. 23 - 28 [in Russian].

52. Karandashev V. K., Orlova T. A., Letnev A. E. Determination of the elemental composition in natural and drinking water by ICP-MS. Instructions NSAM N 480-Kh. - Moscow: VIMS, 2006. - 40 p. [in Russian].

53. Karandashev V. K., Orlova T. A., Letnev A. E. Determination of total mercury in natural and drinking water by ICP-MS. Instructions NSAM N 480-Kh. - Moscow: VIMS, 2006. - 13 p. [in Russian].

54. Cui C., Peng H., Zhang Y., Nan K., et al. Ti-containing mesoporous silica packed microcolumn separation/preconcentration combined with inductively coupled plasma-mass spectrometry for determination of trace Cr, Cu, Cd and Pb in environmental samples / J. Anal. Atom. Spectrom. 2015. Vol. 30. N 6. P. 1386 - 1394.

55. Su C., Zee T., Sun Y. On-line solid phase extraction using a PVC-packed minicolumn coupled with ICP-MS for determination oftrace multielements in complicated matrices / J. Anal. Atom. Spectrom. 2012. Vol. 27. N 9. P. 1585 - 1590.

56. Xueqin Guo, Man He, Beibei Chen, Bin Hu. Solidified floating organic drop microextraction combined with ETV-ICP-MS for the determination of trace heavy metals in environmental water samples / Talanta. 2012. Vol. 94. P. 70 - 76.

57. Bueno Cotta A. J., Enzweiler J. Quantification of major and trace elements in water samples by ICP-MS and collision cell to attenuate Ar and Cl-based polyatomic ions / J. Anal. Atom. Spectrom. 2009. Vol. 24. N 10. P. 1406- 1413.

58. Issa N. B., Rajaković-Ognjanović V. N., Marinković A. D., Rajaković L. V. Separation and determination of arsenic species in water by selective exchange and hybrid resins / Anal. Chim. Acta. 2011. Vol. 706. N 1. P. 191 - 198.

59. Zu Liang Chen, Megharaj M., Naidu R. Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry / Talanta. 2007. Vol. 72. N 2. P. 394 - 400 [in Russian].


Для цитирования:


Дальнова О.А., Бебешко Г.И., Еськина В.В., Барановская В.Б., Карпов Ю.А. СОВРЕМЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В СТОЧНЫХ ВОДАХ (ОБЗОР). Заводская лаборатория. Диагностика материалов. 2017;83(6):5-13.

For citation:


Dalnova O.A., Bebeshko G.I., Eskina V.V., Baranovskaya V.B., Karpov Y.A. Modern Methods of Heavy Metal Determination in Waste Water (Review). Industrial laboratory. Diagnostics of materials. 2017;83(6):5-13. (In Russ.)

Просмотров: 157


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)