Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Электронно-зондовый рентгеноспектральный анализ нанопленок при наклонном падении пучка электронов

Полный текст:

Аннотация

Исследованы предельные возможности электронно-зондового рентгеноспектрального метода определения следовых количеств металла на кремниевой подложке. Экспериментальные данные получены для ультратонких пленок хрома на кремниевой подложке. Показано, что при сильном наклоне образца (80°) улучшается отношение сигнал/шум. Это позволило определить рекордно низкие для данного метода содержания хрома. Градуировочная характеристика для наклонного расположения образца получена расчетным путем с использованием метода Монте-Карло. Экспериментально определена поверхностная концентрация атомов хрома (2,2 ± 0,5) · 1014 см-2. Предел обнаружения хрома при предложенной конфигурации эксперимента составил около 5 · 1013 см-2. Для электронно-зондового микроанализа массивных образцов это значение является рекордным. Эквивалентная масса хрома при таком значении поверхностной концентрации составляет приблизительно 4 · 10-18 г. Реализация данного способа не требует внесения изменений в конструкцию прибора.

Об авторах

С. А. Дарзнек
Научно-исследовательский центр по изучению свойств поверхности и вакуума
Россия


В. Б. Митюхляев
Научно-исследовательский центр по изучению свойств поверхности и вакуума
Россия


П. А. Тодуа
Научно-исследовательский центр по изучению свойств поверхности и вакуума
Россия


М. Н. Филиппов
Научно-исследовательский центр по изучению свойств поверхности и вакуума; Институт общей и неорганической химии им. Н. С. Курнакова РАН
Россия


Список литературы

1. Opila R. L., Eng J. Jr. Thin films and interfaces in microelectronics: composition and chemistry as function of depth / Prog. Surf. Sci. 2002. Vol. 69. N 4. P. 125 - 163.

2. Подгорный Д. А., Сметюхова Т. Н., Иржак А. В. Определение толщин сверхтонких пленок методом электронной Оже-спектроскопии / Заводская лаборатория. Диагностика материалов. 2012. Т. 78. № 8. С. 33 - 36.

3. Senoner M., Unger W. E. S. SIMS imaging of the nanoworld: applications in science and technology / J. Anal. Atom. Spectrom. 2012. Vol. 27. N 7. P. 1050 - 1068.

4. Chu W. K., Liu J. R. Rutherford backscattering spectrometry: reminiscences and progresses / Mat. Chem. Phys. 1996. Vol. 46. N 2 - 3. P. 183 - 188.

5. Campos C. S. et al. Thickness determination of ultra-thin films on Si substrates by EPMA / Microchim. Acta. 2004. Vol. 145. N. 1 - 4. P. 13 - 17.

6. Procop M. et al. Electron probe microanalysis (EPMA) measurement of thin-film thickness in the nanometre range / Anal. bioanal. Chem. 2002. Vol. 374. N 4. P. 631 - 634.

7. Llovet X., Merlet C. Electron probe microanalysis of thin films and multilayers using the computer program XFILM / Microsc. Microanal. 2010. Vol. 16. N 1. P. 21 - 32.

8. Bakaleinikov L. A. et al. Depth profiling of semiconductor structures by X-ray microanalysis using the electron probe energy variation technique / Semiconductors. 2009. Vol. 43. N 4. P. 544 - 549.

9. Popova T. B. et al. Electron probe microanalysis of heterostructures with nanolayers / Semiconductors. 2011. Vol. 45. N 2. P. 260 - 264.

10. Gavrilenko V. P. et al. Electron probe measurements of oxide film thickness on silicon surfaces / Measur. Tech. 2015. Vol. 58. N 9. P. 953 - 957.

11. Tsuji K. Grazing-exit electron probe X-ray microanalysis (GE-EPMA): Fundamental and applications / Spectrochim. Acta. Part B: Atomic Spectroscopy. 2005. Vol. 60. N. 11. P. 1381 - 1391.

12. Wendt M., Krajewski T., Bimberg R. Detection of thin surface films by electron beam microanalysis. A comparison between wavelength-dispersive and energy-dispersive microprobes / Physica Status Solidi (A). 1976. Vol. 36. N 1. P. 253 - 261.

13. Pouchou J. L., Pichoir F., Boivin D. Further improvements in quantitation procedures for X-ray microanalysis / Proceedings of the XII International Symposium on X-Ray Optics and Microanalysis. 1990. P. 52 - 59.

14. Wendt M. Electron probe microanalysis of thin films at variable angle of incidence / Fresenius J. Anal. Chem. 1991. Vol. 340. P. 193 - 196.

15. Joy D. C. Monte Carlo Modeling for Electron Microscopy and Microanalysis. - N.Y.: Oxford Univ. Press, 1995. - 216 p.

16. Reimer L., Krefting E. R. The effect of scattering models on the result of Monte-Carlo calculations / Use of Monte Carlo calculations in electron probe microanalysis and scanning electron microscopy: proceedings of a workshop held at the National Bureau of Standards, Gaithersburg, Maryland, October 1 - 3, 1975. - US Dept. of Commerce, National Bureau of Standards: for sale by the Supt. of Docs., US Govt. Print. Off., 1976. N 460. P. 45 - 60.

17. Llovet X. et al. Cross sections for inner-shell ionization by electron impact / J. Phys. Chem. Ref. Data. 2014. Vol. 43. N 1. P. 013102 - 013105.


Для цитирования:


Дарзнек С.А., Митюхляев В.Б., Тодуа П.А., Филиппов М.Н. Электронно-зондовый рентгеноспектральный анализ нанопленок при наклонном падении пучка электронов. Заводская лаборатория. Диагностика материалов. 2017;83(9):5-9.

For citation:


Darznek S.A., Mityukhlyaev V.B., Todua P.A., Filippov M.N. Electron Probe X-Ray Analysis of Nano-Films at Off-Normal Incidence of the Electron Beam. Industrial laboratory. Diagnostics of materials. 2017;83(9):5-9. (In Russ.)

Просмотров: 46


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)