Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Rapid Procedure for Measuring Oxygen Concentration in Aqueous, Non-Aqueous And Gaseous Media

Abstract

At present, the amperometric determination of oxygen concentration using the Clarke electrode is surely replaced by an optical method based on dye phosphorescence quenching by molecular oxygen with subsequent conversion of the lifetime of the excited state into the concentration value using a calibration curve. The first domestic serial analyzer «Expert-009» based on the aforementioned principle was included in the State Register of Measuring Instruments in March 2016. The sensitive element of the sensor is a polymer film with a dye (fluorine-substituted porphyrin metallocomplex) distributed therein. The matrix material should be resistant to highly active singlet oxygen formed during measurements. Here, we study a possibility of using polyhexafluoropropylene (PHFP) as a matrix material. The metrological characteristics of the sensor are determined: the accuracy figures do not exceed 5% and 8% for isothermal measurements (25.0°C), and for the measurements within a temperature range of 5 - 35°C, respectively.

About the Authors

N. K. Zaitsev
Московский технологический университет
Russian Federation


A. A. Zharov
Институт органической химии им. Н. Д. Зелинского РАН
Russian Federation


P. V. Melnikov
Московский технологический университет
Russian Federation


A. E. Kozhuhova
Московский технологический университет
Russian Federation


References

1. ПНД Ф 14.1:2.101-97. Методика выполнения измерений массовой концентрации растворенного кислорода в пробах природных и очищенных сточных вод йодометрическим методом.

2. ИСО 5813:2012. Качество воды. Определение содержания растворенного кислорода. Йодометрический метод.

3. ИСО 5814:2012. Качество воды. Определение растворенного кислорода. Электрохимический метод с применением зонда.

4. Лурье Ю. Ю., Рыбникова А. И. Химический анализ производственных сточных вод. - М.: Химия, 1974. С. 45 - 54.

5. McDonagh C., Burke C. S., MacCraith B. D. Optical Chemical Sensors / Chem. Rev. 2008. Vol. 108. N 2. P. 400 - 422.

6. Quaranta M., Borisov S. M., Klimant I. Indicators for optical oxygen sensors / Bioanal. Rev. 2012. Vol. 4. N 2. P. 115 - 157.

7. Wang X.-D., Wolfbeis O. S. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications / Chem. Soc. Rev. 2014. Vol. 43. P. 3666 - 3761.

8. Weiwei Feng, Na Zhou, Lingxin Chen, Bowei Li. An optical sensor for monitoring of dissolved oxygen based on phase detection / J. Opt. 2013. Vol. 15. N 5. P. 055502.

9. Жаров А. А., Гузяева И. А. Кинетика и механизм термической полимеризации гексафторпропилена при высоких давлениях / Изв. РАН. Серия химическая. 2010. № 6. С. 1199 - 1205.

10. Belov N. A., Zharov A. A., Shashkin A. V., et al. Gas transport and free volume in hexafluoropropylene polymers / J. Membrane Sci. 2011. Vol. 383. P. 70 - 77.

11. Carraway E. R., Demas J. N., DeGraff B. A. Luminescence quenching mechanism for microheterogeneous systems / Anal. Chem. 1991. Vol. 63. N 4. P. 332 - 336.

12. Carraway E. R., Demas J. N., DeGraff B. A. Luminescence Quenching Mechanism for Microheterogeneous Systems / Anal. Chem. 1991. Vol. 63. P. 332 - 336.

13. Carraway E. R., Demas J. N., DeGraff B. A., Bacon J. R. Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes / Anal. Chem. 1991. Vol. 63. P. 337 - 342.

14. РМГ 61-2010 ГСИ. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки.


Review

For citations:


Zaitsev N.K., Zharov A.A., Melnikov P.V., Kozhuhova A.E. Rapid Procedure for Measuring Oxygen Concentration in Aqueous, Non-Aqueous And Gaseous Media. Industrial laboratory. Diagnostics of materials. 2017;83(9):9-14. (In Russ.)

Views: 812


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)