Preview

Industrial laboratory. Diagnostics of materials

Advanced search

MAGNETOMETRIC METHOD IN ANALYSIS OF FERRITIC-MARTENSITIC STEELS

https://doi.org/10.26896/1028-6861-2017-83-11-41-46

Abstract

 The possibility of using magnetometric analysis based on measuring the magnetic permeability of samples for determination of the structural characteristics of ferritic-martensitic steels possessing high stability of undercooled austenite is substantiated. The structure of those steels at room temperature consists of martensite and high-temperature δ-ferrite. A facility has been designed and manufactured that provides measuring the magnetic permeability and, using the data thus obtained, determine the Curie temperature of ferritic-martensitic steel samples upon cooling them from the temperatures of the gamma region to room temperature. The inductance coil connected in parallel with the capacitor is the heart of the installation. The oscillatory circuit is tuned to a resonant frequency in the range 40 – 80 kHz. The test piece is placed in the coil preheated to a temperature of 1100°C and in fact is the inductor core. It is shown that the relative change in the inductance of the coil together with the sample during continuous cooling depends on the structural class of the steel under test. For ferritic-martensitic steel the change is two-staged: the first abrupt change (at a higher temperature) corresponds to the onset of ferromagnetism in the ferrite, the second is smoother occurs upon further cooling due to martensite formation. For ferritic steel samples there is only one sharp change at the Curie temperature of the ferrite. When testing samples of austenitic steel, there is no abrupt change in the magnetic permeability up to room temperature. It is shown that the magnitude of the effect corresponding to the onset of ferromagnetism in ferrite is proportional to the content of δ-ferrite in the structure. This makes it possible to separate the contribution of two ferromagnetic structural components, martensite and δ-ferrite. The developed technique also makes it possible to determine the temperatures of the beginning (Mn) and the end (Mk) of the martensitic transformation. The implementation and experimental errors of the developed installation and measuring technique are estimated.

 

 

About the Authors

M. Yu. Belomyttsev
НИТУ «МИСиС», Москва
Russian Federation


E. I. Kuzko
НИТУ «МИСиС», Москва
Russian Federation


P. A. Prokofiev
НИТУ «МИСиС», Москва
Russian Federation


References

1. Lifshits B. G., Kraposhin V. S., Linetskii Ya. L. Physical properties of metals and alloys. — Moscow: Metallurgiya, 1980. — 320 p. [in Russian].

2. Bernshtein M. L., Rakhshtadt A. G. (eds.). Metallurgy and heat treatment of steel. Vol. 1. Methods of testing and research. — Moscow: Metallurgiya, 1985. — 352 p. [in Russian].

3. Gorkunov É. S., Yakushenko E. I., Zadvorkin S. M., Mushnikov A. N. Effect of elastic deformations on magnetic characteristics of chromium-nickel steels Fiz. Met. Metalloved. 2015. Vol. 116. N 2. P. 156 – 162 [in Russian].

4. Gorkunov É. S., Putilova E. A., Zadvorkin S. M., Makarov A. V., Pecherkina N. L., Kalinin G. Yu., Mushnikova S. Yu., Fomina O. V. Behavior of magnetic characteristics in promising nitrogen-containing steels upon elastoplastic deformation Fiz. Met. Metalloved. 2015. Vol. 116. N 8. P. 884 – 890 [in Russian].

5. Gorkunov É. S., Zadvorkin S. M., Putilova E. A., Savrai R. A. Effect of the structure and stress state on the magnetic properties of metal in different zones of welded pipes of large diameter Fiz. Met. Metalloved. 2014. Vol. 115. N 10. P. 1011 – 1018 [in Russian].

6. Uvarov A. I., Vil’danova N. F., Nichipuruk A. P., Somova V. M., Sazhina E. Yu., Anufrieva E. I., Filippov Yu. I. Effect of thermomechanical treatments on hardness and coercive force of aged austenitic alloy of invar composition Fiz. Met. Metalloved. 2014. Vol. 115. N 10. P. 1064 – 1069 [in Russian].

7. Ul’yanov A. I., Baranova I. A., Chulkina A. A., Zagainov A. V., Volkov V. A. On the use of temperature dependences of the coercive force for an analysis of structural and phase changes that occur upon tempering of alloy carbon steels Fiz. Met. Metalloved. 2014. Vol. 115. N 5. P. 467 – 473 [in Russian].

8. Chukalkin Yu. G., Goshchitskii B. N., Leont’eva-Smirnova M. V., Chernov V. M. Effect of heat treatment and neutron irradiation on magnetic properties of ferritic-martensitic steels containing 12% Cr Fiz. Met. Metalloved. 2014. Vol. 115. N 4. P. 368 – 373 [in Russian].

9. Sandomirskii S. G. Analysis of the structural and phase maximum differential magnetic susceptibility of steels Metally. 2016. N 4. P. 45 – 51 [in Russian].

10. Antsiferov V. N., Bulanov V. Ya., Gurevich Yu. G., Ivashko A. G., Tsyganova M. S. Study of decomposition of supercooled austenite of powder steels with the help of a novel digital magnetometer Metalloved. Term. Obrab. Met. 2005. N 4. P. 24 – 29 [in Russian].

11. Maksimkin O. P., Tsai K. V. Magnetometric study of the ã á martensite transformation in a neutron-irradiated 12Kh18N10T steel Metally. 2008. N 5. P. 39 – 47 [in Russian].

12. Kazantseva N. V., Stepanova N. N., Rigmant M. B., Davydov D. I., Shishkin D. A., Demakov S. L., Ryzhkov M. A., Romanov E. P. Study of magnetic properties and structural and phase transformations in the Co 19 % at. – Al 6 % at. – W alloy Fiz. Met. Metalloved. 2015. Vol. 116. N 6. P. 563 – 569 [in Russian].

13. Kornienkov B. A., Libman M. A., Éstrin É. I. On the effect of annealing temperature on Curie point in amorphous alloys Fiz. Met. Metalloved. 2014. Vol. 115. N 2. P. 132 – 133 [in Russian].

14. Kornienkov B. A., Libman M. A., Molotilov B. V., Éstrin É. I. Ferro-paramagnetic transition in a Fe-Ni-Si-B alloy in amorphous and crystalline states Fiz. Met. Metalloved. 2013. Vol. 114. N 3. P. 237 – 240 [in Russian].

15. Chekanova L. A., Denisova E. A., Goncharova O. A., Komogortsev S. V., Iskhakov R. S. Analysis of phase composition of Co-P alloy powders using magnetometric data Fiz. Met. Metalloved. 2013. Vol. 114. N 2. P. 136 – 144 [in Russian].

16. Stepanova N. N., Davydov D. I., Nichipuruk A. P., Rigmant M. B., Kazantseva N. V., Vinogradova N. I., Pirogov A. N., Romanov E. P. The structure and magnetic properties of a heat-resistant nickel-base alloy after a high-temperature deformation Fiz. Met. Metalloved. 2011. Vol. 112. N 3. P. 328 – 336 [in Russian].

17. Merinov P. E., Korneev A. U., Tsikunov N. S. Standardization of control of the content of ferrite phase in chromium-nickel austenitic and austenitic-ferritic steels by magnetic method Metalloved. Term. Obrab. Met. 2006. N 7. P. 53 – 59 [in Russian].

18. Moorthy V., Vaidyanathan S., Raj B., Jayakumar T., Kashyap B. Insight into the microstructural characterization of ferritic steels using micromagnetic parameters Metallurgical Materials Transactions. A. 2000. Vol. 31A. P. 1053 – 1065.

19. Byeon J. W., Kwun S. I. Magnetic nondestructive evaluation of thermally degraded 2.25Cr-1Mo steel Material Letters. 2003. Vol. 58. P. 94 – 98.

20. State Standard GOST R 53686–2009. Welding. Determination of the content of the ferrite phase in the weld metal of austenitic and two-phase ferrite-austenitic chromium-nickel corrosion-resistant steels. — Moscow: Standartinform, 2011. — 39 p. [in Russian].


Review

For citations:


Belomyttsev M.Yu., Kuzko E.I., Prokofiev P.A. MAGNETOMETRIC METHOD IN ANALYSIS OF FERRITIC-MARTENSITIC STEELS. Industrial laboratory. Diagnostics of materials. 2017;83(11):41-46. (In Russ.) https://doi.org/10.26896/1028-6861-2017-83-11-41-46

Views: 749


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)