Preview

Industrial laboratory. Diagnostics of materials

Advanced search

A METHOD OF CONSTRUCTING CONFIDENCE INTERVALS FOR PERCENTILES OF COMPOSITE STRENGTH RANDOM VARIABLE USING BOOTSTRAP SIMULATION

https://doi.org/10.26896/1028-6861-2017-83-11-73-77

Abstract

A method is proposed for constructing basic sets (confidence intervals for percentiles) using bootstrap simulation as an alternative to currently used approaches. Bootstrap simulation is a method for numerical modeling of distributions based on multiple data reproduction the without using any information regarding the distribution laws. Since the strength characteristics are random variables, statistical estimation with construction of the interval characteristics is required. This is the goal of the study. An illustrative example of constructing the confidence intervals for mean strength value using bootstrap-modeling is considered. To construct the confidence intervals for percentiles of the distributions of the strength characteristics we recommend to assign the distribution to one of the currently known (normal, lognormal distribution or Weibull) laws, unlike the existing non-parametric approach that generally gives a conservative (too low) and thus undesirable results, which is the reason for developing a new approach. A comparison of B-bases, determined by the newly proposed and traditional method is carried out on real samplings of the strength characteristics of composite materials. The specific examples of strength parameters for shear and tensile strength of the specimens made of prepreg HexPly (composite materials, semiproducts) using an autoclave molding method are presented.

 

 

About the Authors

I. V. Gadolina
Институт машиноведения им. А. А. Благонравова РАН, Москва
Russian Federation


N. G. Lisachenko
АО «ОНПП «Технология» им. А. Г. Ромашина» Госкорпорации «Ростех», Москва
Russian Federation


References

1. Smerdov A. A., Dumanskii A. M., Tairova L. P. A comprehensive experimental study of the deformation and strength properties of composites for compartments and fairings of launch vehicles / Vestnik MGTU im. N. Й. Baumana. Ser. Mashinostr. 2012. P. 124 – 136 [in Russian].

2. Composite Materials Handbook - 17 (CMH-17). SAE International on behalf of CMH-17, Wichita State University, March 2012. Chapter 8. Statistical Method. P. 552 – 712.

3. Lisachenko N. G., Popov A. G., Gadolina I. V. The analysis of the stability of the strength properties of modern carbon fiber reinforced plastics: proc. of the conf. / Deformation and fracture of composite materials DFCMS-2016. IMASh RAN, Moscow, Russia, October 18 – 20, 2016. P. 74 – 76 [in Russian].

4. Diaconis P., Efron B. Computer-intensive method in Statistic / Sci. American. 1983. Vol. 248. N 5. P. 116 – 131.

5. Adler Yu. P., Gadolina I. V., Lyandres M. N. Bootstrap-modeling for confidence-interval building for censored sets / Zavod. Lab. 1987. Vol. 53. N 10. P. 90 – 94 [in Russian].

6. Orlov A. I. Econometry. — Moscow: Ékzamen, 2002. — 576 p. [in Russian].

7. By Yvonne H. S., Lee S. Iterated smoothed bootstrap confidence intervals for population quantiles / The Annals of Statistics. 2005. Vol. 33. N 1. P. 437 – 462.

8. Veshnyakov B. V., Kibzun A. I. Application of bootstrap method for quantile function estimation / Avtomat. Telemekh. 2007. Issue 1. P. 46 – 60 [in Russian].

9. Stepnov M. N., Zinin A. V. Prediction of materials and machins parts characteristics. — Moscow: Innovatsionnoe mashinostroenie, 2016. — 391 p. [in Russian].

10. Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.


Review

For citations:


Gadolina I.V., Lisachenko N.G. A METHOD OF CONSTRUCTING CONFIDENCE INTERVALS FOR PERCENTILES OF COMPOSITE STRENGTH RANDOM VARIABLE USING BOOTSTRAP SIMULATION. Industrial laboratory. Diagnostics of materials. 2017;83(11):73-77. (In Russ.) https://doi.org/10.26896/1028-6861-2017-83-11-73-77

Views: 879


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)