Preview

Industrial laboratory. Diagnostics of materials

Advanced search

EVOLUTIONARY QUANTITATIVE FULL-PROFILE X-RAY PHASE ANALYSIS BASED ON THE RIETVELD METHOD, A SELF-CONFIGURABLE MULTIPOPULATION GENETIC ALGORITHM AND ELEMENTAL ANALYSIS DATA

https://doi.org/10.26896/1028-6861-2018-84-3-25-31

Abstract

We developed a self configuring genetic algorithm to quantify phase concentrations in a crystalline sample from powder X-ray diffraction data. The algorithm does not require the fine-tuning of parameters, which is inherent to most evolutionary algorithms. The software executing the algorithm uses parallel computing and allows performing reference-free quantitative phase analysis on a personal computer, a computing cluster or with the help of a computer network. The suggested method was tested on a set of trial samples with known composition. It was demonstrated that one may use data on the chemical composition of a sample to increase the accuracy of quantitative phase analysis.

About the Authors

A. N. Zaloga
Siberian Federal University.
Russian Federation
Krasnoyarsk.


P. S. Dubinin
Siberian Federal University.
Russian Federation
Krasnoyarsk.


I. S. Yakimov
Siberian Federal University.
Russian Federation
Krasnoyarsk.


O. E. Bezrukova
Siberian Federal University.
Russian Federation
Krasnoyarsk.


S. V. Burakov
Siberian State Science and Technology University.
Russian Federation
Krasnoyarsk.


K. A. Gusev
Siberian State Science and Technology University.
Russian Federation
Krasnoyarsk.


M. E. Semenkina
Siberian State Science and Technology University.
Russian Federation
Krasnoyarsk.


References

1. Young R. A. The Rietveld Method. — Oxford University Press, 1995. — 298 p.

2. Bish D. L., Howard S. A. Quantitative phase analysis using the Rietveld method / J. Appl. Cryst. 1988. Vol. 21. P. 86 – 91.

3. Yakimov I. S., Zaloga A. N., Solov’ev L. A., Yakimov Ya. I. Method of evolutionary structure-sensitive quantitative x-ray phase analysis of multiphase polycrystalline materials / Zavod. Lab. Diagn. Mater. 2011. Vol. 77. N 11. P. 29 – 34 [in Russian].

4. Gumennikova A. V., Emel’yanova M. N., Semenkin E. S., Sopov E. A. On evolutionary algorithms for solving complex optimization problems / Vestn. Sib. Gos. Aйrokosm. Univ. im. Akad. M. F. Reshetneva. 2003. N 4. P. 14 [in Russian].

5. Harris K. D., Johnston R. L., Kariuki B. M. The genetic algorithm: Foundations and applications in structure solution from powder diffraction data / Acta Crystallogr. 1998. Sect. A: Found. Crystallogr. Vol. 54. P. 632 – 645.

6. Feng Z., Dong C. A program for structure determination from powder diffraction data using a genetic algorithm / J. Appl. Crystallogr. 2007. Vol. 40. P. 583 – 588.

7. Lutterotti L., Bortolotti M. Object oriented programming and fast computation techniques in Maud, a program for powder diffraction analysis written in java / IUCr: Compcomm Newsletter. 2003. Vol. 1. P. 43 – 50.

8. Burakov S. V., Zaloga A. N., Semenkin E. S., Yakimov I. S. Research on convergence o multipopulation binary- and real-coded genetic algorithms for solution of crystal structure from X-Ray powder diffraction data / Crystal Research and Technology. 2015. Vol. 50. Issue 9 – 10. P. 724 – 728.

9. Zaloga A., Akhmedova S., Yakimov I., Burakov S., Semenkin E., Dubinin P., Piksina O., Andryushchenko E. Genetic Algorithm for Automated X-Ray Diffraction Full-Profile Analysis of Electrolyte Composition on Aluminium Smelters / Lecture Notes in Electrical Engineering. 2016. Vol. 383. P. 79 – 93.

10. Gomez J. Self Adaptation of Operator Rates Evolutionary Algorithms / Genetic and Evolutionary Computation — GECCO. Lecture Notes in Computer Science. 2004. Vol. 3102. P. 1162 – 1173.

11. Toussaint M., Igel C. Neutrality: a necessity for self-adaptation / Proceedings of the IEEE Congress on evolutionary computation. 2002. P. 1354 – 1359.

12. Semenkina M. E. Self-adaptive evolutionary algorithms for designing information technologies for data mining / Iskusst. Intell. Prin. Resh. 2013. N 1. P. 13 – 23 [in Russian].

13. Sopov E. A Self-configuring Metaheuristic for Control of Multi-Strategy Evolutionary Search / Advances in Swarm and Computational Intelligence. 2015. P. 29 – 37.

14. Semenkin E., Semenkina M. The Choice of Spacecrafts’ Control Systems Effective Variants with Self-Configuring Genetic Algorithm / In: Ferrier J. L. et al (Eds.): Informatics in Control, Automation and Robotics. Proceedings of the 9th International Conference ICINCO’2012. 2012. Vol. 1. P. 84 – 93.

15. Semenkin E., Semenkina M. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator / Advances in Swarm Intelligence. Lecture Notes in Computer Science. 2012. P. 414 – 421.

16. Le Bail A. The Profile of a Bragg Reflection for Extracting Intensities. Ch. 5. Powder Diffraction Theory and Practice. — Cambridge. Royal Society of Chemistry, 2008. — 571 p.

17. Nicola V. Y. Scarlett, Ian C. Madsen, Lachlan M. D. Cranswick et al. / Round Robin on Quantitative phase analysis: samples 2 / J. Appl. Cryst. 2002. N 35. P. 383 – 400.

18. Inorganic Crystal Structure Database (ICSD). On-line: www2.fiz-karlsruhe.de/icsd_publications.html.


Review

For citations:


Zaloga A.N., Dubinin P.S., Yakimov I.S., Bezrukova O.E., Burakov S.V., Gusev K.A., Semenkina M.E. EVOLUTIONARY QUANTITATIVE FULL-PROFILE X-RAY PHASE ANALYSIS BASED ON THE RIETVELD METHOD, A SELF-CONFIGURABLE MULTIPOPULATION GENETIC ALGORITHM AND ELEMENTAL ANALYSIS DATA. Industrial laboratory. Diagnostics of materials. 2018;84(3):25-31. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-3-25-31

Views: 1823


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)