ANALYSIS OF CORROSION-RESISTANT TITANIUM ALLOYS DOPED WITH RUTHENIUM BY ICP-AES
https://doi.org/10.26896/1028-6861-2018-84-5-14-19
Abstract
We present a technique of multi-element analysis of new corrosion-resistant titanium alloys doped with ruthenium using Optima 7300 DV ICP-AES spectrometer (Perkin Elmer Corporation, USA) and microwave system Speedwave FOUR (Berghof Products, Germany). Compositions of the acid mixture as well as the temperature and time parameters of the sample preparation of titanium alloys under microwave heating in an autoclave which ensure a complete quantitative transfer of the sample into a convenient analytical form for subsequent ICP-AES analysis without loss of volatile components are substantiated. Optimal conditions of excitation of the analytical signal of analytes for ICP-spectrometer are specified and analytical lines of the elements free of spectral interference are chosen for determination of all critical components in corrosion-resistant titanium alloys. The studies were carried out using samples of experimental melting of industrial titanium alloys of different classes, which, due to volumetric doping with ruthenium, are under development and are not yet commercially available in Russia (grades of alloys PT-7M+Ru, PT-3B+Ru, 5B+Ru, 37+Ru, BT-22+Ru). The samples contained the following alloying elements (% wt.): Al (1.8 – 6.3); V (1.0 – 5.5); Mo (0.7 – 5.5); Zr (0.2 – 3.0); Cr (0.5 – 1.5); Fe (0.5 – 1.5); Ru (0.05 – 0.15). The correctness of the alloying element determination is confirmed by analysis of standard samples using the method of sample variation and spike test for ruthenium determination. The developed technique significantly shortens the duration of the analysis due to combination of the multi-element method of ICP-AES with microwave sample preparation, expands the list of detectable elements in titanium alloys, and increases the accuracy of Al, Si, V, Cr, Fe, Ni, Cu, Zr, Nb, Mo and Ru determination in titanium alloys in critical(rated) ranges of concentrations.
About the Authors
A. V. VyacheslavovRussian Federation
Alexander V. Vyacheslavov.
St. Petersburg
Yu. Yu. Malinkina
Russian Federation
Yulia Yu. Malinkina.
St. Petersburg
V. B. Bichaev
Russian Federation
Vitaly B. Bichaev.
St. PetersburgA. D. Titova
Russian Federation
Anna D. Titova.
St. PetersburgT. N. Ermolaeva
Russian Federation
Tatyana N. Ermolaeva
References
1. Il’in A. A., Kolachev B. A., Pol’kin I. S. Titanium alloys. Composition, structure, properties. Directory. — Moscow: VILS – MATI, 2009. — 520 p. [in Russian].
2. Gorynin I. V., Ushkov S. S., Khatuntsev A. N., et al. Titanium alloys for marine engineering. — St. Petersburg: Politekhnika, 2007. — 387 p. [in Russian].
3. RF Pat. N 2426808, Kudriavtsev A. S., et al. Alloy on the basis of titanium / Byull. Otryt. Izobret. 2011. N 23 [in Russian].
4. ASTM E2371-13. Standard Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-Based Test Methodology) / ASTM International publ. 2013. P. 13. DOI: 10.1520/E2371-13.
5. ASTM E539-11. Standard Test Method for Analysis of Titanium Alloys by X-Ray Fluorescence Spectrometry / ASTM International publ. 2011. P. 10. DOI: 10.1520/E539-11.
6. Titov V. I., Goundobin N. V., Kotikov V. N. Determination of Ruthenium in Heat-Resistant Nickel Alloys by Atomic Emission Spectrometry with Inductively Coupled Plasma / J. Applied Spectrosc. 2013. Vol. 80. N 4. P. 477 – 481.
7. Kablov E. N., Karpov Yu. A., Titov V. I., et al. Rhenium and Ruthenium Determination in Nanostructured High-Temperature Alloys for Aerospace Engineering / Inorg. Mater. 2015. Vol. 51. N 14. P. 1363 – 1369.
8. Inamoto I. The Progress of Analysis Technologies for Titanium / Nippon Steel Technical Report. 2002. N 85. P. 149 – 156.
9. Mosichev V. I., Kalinkin I. P., Nikolaev G. I. Analytical control of the composition of materials of ferrous and nonferrous metallurgy. Vol. 3. Metals and alloys. Analysis and research. — St. Petersburg: NPO «Professional», 2007. — 1092 p. [in Russian].
10. Kubrakova I. V. Microwave radiation in analytical chemistry: the scope and prospects for application / Russ. Chem. Rev. 2002. Vol. 71. N 4. P. 283 – 294.
11. RF Pat. N 2439183, Leonov V. P. et al. Alloy on the basis of titanium / Byull. Otkryt. Izobret. 2012. N 1 [in Russian].
12. RF State Standard GOST 19807–91. Wrought titanium and titanium alloys. Grades. — Moscow: Standartinform, 1992. — 3 p. [in Russian].
13. Sansonetti J. E., Martin W. C. Handbook of Basic Atomic Spectroscopic Data / J. Phys. Chem. Ref. Data. 2005. Vol. 34. N 4. P. 1559 – 2259.
14. Zaidel’ A. N., Prokof’ev V. K., Raiskii S. M., et al. Tables of spectral lines. — Moscow: Nauka, 1977. P. 649 – 656 [in Russian].
15. Mermet J. M. Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics / Anal. Chim. Acta. 1991. Vol. 250. P. 85 – 94.
Review
For citations:
Vyacheslavov A.V., Malinkina Yu.Yu., Bichaev V.B., Titova A.D., Ermolaeva T.N. ANALYSIS OF CORROSION-RESISTANT TITANIUM ALLOYS DOPED WITH RUTHENIUM BY ICP-AES. Industrial laboratory. Diagnostics of materials. 2018;84(5):14-19. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-5-14-19