STUDY OF SORPTION KINETICS IN METAL HYDRIDE PAIRS
https://doi.org/10.26896/1028-6861-2018-84-5-27-31
Abstract
We present the results of studying sorption processes in metal hydride pairs. Technique and laboratory setup are developed for experimental study of kinetics and determination of the duration of interaction between hydrogen and hydrides formed upon saturation of two intermetallic compounds (IMC) of different compositions. The design of the setup and principle of operation are presented. The setup includes two steel retorts which contain the alloys capable of multicycle reversible sorption of hydrogen with formation of the high- and low-temperature hydrides. The system provides measurements of pressure in the hydrogen pipeline between the retorts and temperature of circulating or stirred heat carriers which cool the retorts during sorption and heat them during desorption. The dynamics of hydrogen pressure change in the pipeline and temperature of the heat carrier under simultaneous operation of two hydrides of alloys Mm1–yLayNi4Co and LaNi5–xAlx are studied. The duration of hydrogen desorption from the first hydride with simultaneous sorption by the second one is determined. The thermal balance for the low-temperature module of the setup was calculated to prove the obtained kinetic characteristics. Similar results were obtained for desorption of hydrogen from high-temperature metal hydride. The technique and results can be used for simulation of sorption processes in metal hydride pair and determination of the parameters of optimal design for efficient operation of sorption heat pumps.
About the Authors
O. P. MatveevaRussian Federation
Olga P. Matveeva.
Moscow
Yu. B. Patrikeev
Russian Federation
Yuri B. Patrikeev.
Moscow
Yu. M. Filyand
Russian Federation
Yulia M. Filyand.
MoscowReferences
1. Somenkov V. A., Shil’shtein S. Sh. Thermodynamic and hysteretic characteristics of hydrides for heat pumps. — Moscow: Ross. nauch. tsentr «Kurchatovski institut», 1998. — 21 p. [in Russian].
2. Izhvanov L. A., Solovei A. I. Development of hydride heat pumps / Ross. Khim. Zh. 2001. Vol. XLV. N 5 – 6. P. 112 – 118 [in Russian].
3. Yang F. S., Wang G. X., Zhang Z. X., Rudolph V. Investigation on the influences of heat transfer enhancement measures in a thermally driven metal hydride heat pump / Int. J. Hydrogen Energy. 2010. Vol. 35. N 18. P. 9725 – 9735.
4. Muthukumar P., Satheesh A. Analysis of crossed van’t Hoff metal hydride based heat pump / Int. J. Hydrogen Energy. 2013. Vol. 38. N 26. P. 11415 – 11420.
5. Sharma V. K., Kumar E. A. Thermodynamic analysis of novel multi stage multi effect metal hydride based thermodynamic system for simultaneous cooling, heat pumping and heat transformation / Int. J. Hydrogen Energy. 2017. Vol. 42. N 1. P. 437 – 447.
6. Mazzucco A., Voskuilen T., Waters E. et al. Heat exchanger selection and design analyses for metal hydride heat pump systems / Int. J. Hydrogen Energy. 2016. Vol. 41. N 7. P. 4198 – 4213.
7. Dantzer P., Meunier F. What materials to use in hydride chemical heat pumps? / Hydrogen Storage Materials / Ed. by R. G. Barnes. — Aedermanusdorf: Trans. Tech. Publ. Ltd., 1988. P. 1 – 17.
8. Matveeva O. P., Patrikeev Yu. B., Semyachkov D. A. Methodical approach to choice of hydrogen-absorbing alloys for metallic-hydride thermal pumps / Dvoinye Tekhnol. 2008. N 4(45). P. 59 – 62 [in Russian].
9. Fateev G. A., Silenkov M. A., Kim K.-Dzh. Experimental investigation of the propagation of heat waves of energy conversion in blown-through porous media / Inzh.-Fiz. Zh. 2000. Vol. 73. N 5. P. 1093 – 1108 [in Russian].
10. RF Pat. 2256718, IPC C22C 28/00, F25B 30/00. A pair of metal hydride alloys for heat pump / Matveeva O. P., Buzlov A. V., Patrikeev Yu. B., Filyand Yu. M.; applicant and owner FGUP «Giredmet». — N 2004102119/02; appl. 28.01.04; publ. 20.07.05. Bull. N 20 [in Russian].
11. Levinskii Yu. V., Patrikeev Yu. B., Filyand Yu. M. Hydrogen in metals and intermetallides. Thermodynamic, kinetic and technological characteristics of metal-hydrogen systems: handbook / Yu. V. Levinsky, ed. — Moscow: Nauchnyi mir, 2017. — 546 p. [in Russian].
12. Patrikeev Yu. B., Filyand Yu. M. Rare earth metals application in modern technologies of hydrogen energy / «Giredmet — year of constitution 1931» / Yu. N. Parhomenko, ed. — Moscow: Giredmet, 2007. P. 119 – 126 [in Russian].
13. Diaz H., Percheron-Guégan A., Achard J. C. et al. Thermodynamic and structural properties of LaNi5–yAly compounds and their related hydrides / Int. J. Hydrogen Energy. 1979. Vol. 4. N 5. P. 445 – 454.
14. Andrievskii R. A. Materials science of hydrides. — Moscow: Metallurgiya, 1986. — 128 p. [in Russian].
15. Kolachev B. A., Shalin R. E., Il’in A. A. Hydrogen storage alloys: handbook. — Moscow: Metallurgiya, 1995. — 384 p. [in Russian].
16. Antonova M. M., Morozova R. A. Preparative chemistry of hydrides: handbook. — Kiev: Naukova dumka, 1976. — 99 p. [in Russian].
Review
For citations:
Matveeva O.P., Patrikeev Yu.B., Filyand Yu.M. STUDY OF SORPTION KINETICS IN METAL HYDRIDE PAIRS. Industrial laboratory. Diagnostics of materials. 2018;84(5):27-31. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-5-27-31