Preview

Industrial laboratory. Diagnostics of materials

Advanced search

New methods of thermographic control using multi-scale analysis of non-stationary thermal fields

https://doi.org/10.26896/1028-6861-2018-84-6-23-31

Abstract

A set of new approaches and techniques of non-destructive testing is described and implemented within a unified computer analysis of the patterns of multi-scale dynamic thermography. Depending on the size of the inspected area, nature, location, orientation and size of the defects, various energy sources were used for probe dynamic heating of the controlled article: air flow, focused laser beam, and point contact. The non-stationary thermal picture of the monitored area was recorded with a high resolution thermal imaging device and then analyzed using original model approaches and developed software. A set of discussed approaches allows detecting and quantitative characterizing of the defects of various types, size (from fractions to tens of millimeters) and orientation, including cracks, coating delamination or degradation, welding and glue seams defects, deposits, etc., both at the outer and inner surfaces of tubes, tanks, and reactors, etc. The developed methods provides determination of the thermophysical characteristics of the material, i.e., the thermal diffusivity coefficient with an accuracy better than ±3%.

About the Authors

Yu. I. Golovin
Lomonosov Moscow State University, Moscow; Nanotechnology and Nanomaterials Reseach Institute, Derzhavin Tambov State University, Tambov
Russian Federation


A. I. Turin
Nanotechnology and Nanomaterials Reseach Institute, Derzhavin Tambov State University, Tambov
Russian Federation


D. Yu. Golovin
Nanotechnology and Nanomaterials Reseach Institute, Derzhavin Tambov State University, Tambov
Russian Federation


A. A. Samodurov
Nanotechnology and Nanomaterials Reseach Institute, Derzhavin Tambov State University, Tambov
Russian Federation


References

1. Klyuev V. V., Artemov B. V., Matveev V. I. Update status and development of the methods for technical diagnostics / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 4. P. 73 – 78 [in Russian].

2. Klyuev V. V., Artem’ev B. V. On the question of non-destructive testing and technical diagnostics in Russia / Kontrol’. Diagn. 2014. N 3. P. 45 – 60 [in Russian].

3. Trukhanov V. M., Klyuev V. V. Reliability, testing, resource forecasting at the stage of complex technology creation. — Moscow: Spektr, 2014. — 312 p. [in Russian].

4. Makhutov N. A. Basic characteristics of structural materials in integtated assessment of strength, resource and survivability of dangerous installations / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 1. P. 62 – 70.

5. Ibarra-Castanedo C., Maldague X. Infrared Thermography / In Handbook of Technical Diagnostics: Fundamentals and Application to Structures and Systems. — Berlin: Springer-Verlag, 2013. P. 175 – 220.

6. Vavilov V. P. Infrared thermography and thermal control. — Moscow: Spektr, 2009. — 544 p. [in Russian].

7. Oswald-Tranta B. Thermo-inductive crack detection / Nondestructive Testing and Evaluation. 2007. Vol. 22. N 2 – 3. P. 137 – 153.

8. Vavilov V. P., Burleigh D. D. Review of pulsed thermal NDT: Physical principles, theory and data processing / NDT & E International. 2015. Vol. 73. P. 28 – 52.

9. Balageas D., Maldague X., Burleigh D., Vavilov V., Oswald-Tranta B., Roche J.-M., Pradere C., Carlomagno G. Thermal (IR) and other NDT techniques for improved material inspection / Journal of nondestructive evaluation. 2016. Vol. 35. P. 18.

10. Gao B., Woo W., Tian G. Electromagnetic thermography nondestructive evaluation: Physics-based modeling and pattern mining / Scientific Reports. 2016. Vol. 6. P. 25480.

11. Abramova E. V. Thermal control in industry safety expertise / Kontrol’. Diagn. 2014. N 3. P. 93 – 95 [in Russian].

12. Golovin Yu. I., Tyurin A. I., Golovin D. Yu., Samodurov A. A. Electric Thermal Inspection of Metal Sheets / Technical Physics Letters. 2017. Vol. 43. N 10. P. 899 – 901.

13. Golovin Yu. I., Tyurin A. I., Golovin D. Yu., Samodurov A. A. Non-stationary thermal flaw detection of coatings of the outer and inner surfaces of metal shells / Technical Physics Letters. 2017. Vol. 43. N 12. P. 1128 – 1131.

14. Golovin Yu. I., Tyurin A. I., Golovin D. Yu., Samodurov A. A. Characterization of metal shells with backside coating using non-stationary thermography / Russian Physics Journal. Vol. 60. N 12. P. 180 – 181.

15. ISO 20473. Optics and photonics — Spectral bands. 2007. — 10 p.

16. Golovin Yu. I. Nanoindentation and its capabilities. — Moscow: Mashinostroenie, 2009. — 312 p. [in Russian].

17. Golovin Yu. I. Nanoindentation as an instrument for integrated evaluation of physicomechanical properties of materials in submicrovolumes (a review) / Zavod. Lab. Diagn. Mater. 2009. Vol. 75. N 1. P. 45 – 59.

18. Golovin Yu. I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: a review / Physics of the Solid State. 2008. Vol. 50. N 12. P. 2205 – 2236.

19. Golovin Yu. I., Tyurin A. I., Aslanyan E. G., Pirozhkova T. S., Vasyukov V. M. The physical and mechanical properties and local deformation micromechanisms in materials with different dependence of hardness on the depth of print / Physics of the Solid State. 2017. Vol. 59. N 9. P. 1803 – 1811.

20. Viktorov S. D., Kochanov A. N., Golovin Yu. I., Tyurin A. I., Shuklinov A. V., Shuvarin I. A., Pirozhkova T. S. Micro- and nano-indentation approach to strength and deformation characteristics of minerals / Journal of Mining Science. 2014. Vol. 50. N 4. P. 652 – 659.

21. Golovin Yu. I., Tyurin A. I. Dynamics and micromechanisms of the deformation of ionic crystals in pulsed microindentation / Physics of the Solid State. 1996. Vol. 38. N 6. P. 1000 – 1003.

22. Shubochkin A. E. The question of formalization images of defects through regression filter / Kontrol’. Diagn. 2014. N 9. P. 25 – 30 [in Russian].

23. Sinev A. I., Morozov A. K., Bratchikov D. Yu. Flaw detection of main pipelines in real time / Terr. Neftegaz. 2010. N 11. P. 34 – 35 [in Russian].

24. Gumerov A. G., Medvedev A. P., Khudyakova L. P., Faritov A. T., Rozhdestvenskii Yu. G. The concept of the development of a system for the technical diagnosis of field pipelines / Neft. Khoz. 2005. N 1. P. 78 – 83 [in Russian].

25. Mikheev M. A., Mikheeva I. M. Fundamentals of heat transfer. 2nd Edition. — Moscow: Énergiya, 1977. — 344 p. [in Russian].

26. Carslaw H. C., Jaeger J. C. Conduction of Heat in Solids. — Oxford University Press, 1959. — 510 p.


Review

For citations:


Golovin Yu.I., Turin A.I., Golovin D.Yu., Samodurov A.A. New methods of thermographic control using multi-scale analysis of non-stationary thermal fields. Industrial laboratory. Diagnostics of materials. 2018;84(6):23-33. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-6-23-31

Views: 681


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)