Preview

Industrial laboratory. Diagnostics of materials

Advanced search

The role and significance of the likelihood ratio concept in assessment and interpretation of the results of forensic activities

https://doi.org/10.26896/1028-6861-2018-84-6-70-76

Abstract

A brief review on using the Bayesian concept of the likelihood ratio (LR) in forensic activities is presented. It is proved that the use of the likelihood ratio provides assessing the measure of uncertainty regarding the truth or falsity of the assumption of expertise when taking into account a priori chances and new information appearing in the course of expert research. A possible simulation experiment is presented as an example to calculate a set of the likelihood ratio values from the validation database for forensic examination of sound recordings. Different approaches of using the likelihood ratio in assessing the trueness of the judicial evidence are considered. The concept of the likelihood ratio has been adopted as the standard procedure for different types of examinations used in the laboratory practice, including that of the European network of forensic institutes (ENFSI).

About the Authors

G. I. Bebeshko
The Russian Federal Centre of Forensic Science of the Ministry of Justice of the Russian Federation, Moscow
Russian Federation


G. G. Omel’yanyuk
The Russian Federal Centre of Forensic Science of the Ministry of Justice of the Russian Federation, Moscow; Peoples’ Friendship University of Russia (RUDN University), Moscow
Russian Federation


A. I. Usov
The Russian Federal Centre of Forensic Science of the Ministry of Justice of the Russian Federation, Moscow; Peoples’ Friendship University of Russia (RUDN University), Moscow; N. Е. Bauman Moscow State Technical University, Moscow
Russian Federation


References

1. Evett I. W. Expressing evaluative opinions: A position statement / Science and Justice. 2011. Vol. 51. P. 1 – 2.

2. Berger C. E. H., Berger E. H., Buckleton J., et al. Evidence evaluation: A response to the Court of Appeal judgment in R v T / Science and Justice. 2011. Vol. 51. P. 43 – 49.

3. Robertson B., Vignaux G. A., Berger C. E. H. Extending the confusion about Bayes / Modern Law Rev. 2011. Vol. 74. P. 444 – 455.

4. Fenton N. Improve statistics in court / Nature. 2011. Vol. 479. N 3. P. 36 – 37.

5. Morrison G. S. The likelihood-ratio framework and forensic evidence in court: A response to R v T / Int. J. Evidence and Proof. 2012. Vol. 16. P. 1 – 29.

6. Aitken C. G. G., Taroni F. Statistics and the evaluation of evidence for forensic scientists. — London: Wiley, 2004. — 510 p.

7. Morrison G. S. Measuring the validity and reliability of forensic likelihood-ratio systems / Science and Justice. 2011. Vol. 51. P. 91 – 98.

8. Ramos D., Gonzalez-Rodriguez J. Reliable support: Measuring calibration of likelihood ratios / Forensic Sci. Int. 2013. Vol. 230. N. 1 – 3. P. 156 – 169.

9. The international vocabulary of Metrology. Basic and General concepts and related terms. — St. Petersburg: NPO «Professional», 2010. — 82 p. [in Russian].

10. Bebeshko G., Voytov S., Omelyanyuk G., Usov A. Applying Bayesian methods for metrological evaluation and interpretation of forensic evidence / Teor. Prakt. Sudeb. Ékspert. 2014. N 1(33). P. 148 – 158 [in Russian].

11. Brümmer N., du Preez J. Application independent evaluation of speaker detection / Computer Speech and Language. 2006. Vol. 20. P. 230 – 275.

12. Van Leeuwen D. A., Brümmer N. An introduction to application-independent evaluation of speaker recognition systems / in C. Müller (ed.). Speaker Classification I: Selected Projects. — Heidelberg: Springer-Verlag, 2007. P. 330 – 353.

13. Ramos D. Forensic evaluation of the evidence using automatic speaker recognition systems: Ph. D. Thesis. http://atvs.ii. uam.es, 2007 (accessed February 26, 2018).

14. Morrison G. S. Likelihood-ratio forensic voice comparison using parametric representations of the formant trajectories of diphthongs / J. Acoustical Society of America. 2009. Vol. 125. P. 2387 – 2397.

15. Morrison G. S., Zhang C., Rose P. An empirical estimate of the precision of likelihood ratios from a forensic-voice-comparison system / Forensic Sci. Int. 2011. Vol. 208. P. 59 – 65.

16. Rose P. Technical forensic speaker recognition / Computer Speech and Language. 2006. Vol. 20. P. 159 – 191.

17. Curran J. M., Buckleton J. S., Triggs C. M., Weir B. S. Assessing uncertainty in DNA evidence caused by sampling effects / Sci. Justice. 2002. Vol. 42. N. 1. P. 29 – 37.

18. Foreman L. A., Champod C., Evett I. W., et al. Interpreting DNA evidence: A review / Int. Statistical Rev. 2003. Vol. 71. P. 473 – 495.

19. Hepler A. B., Saunders C. P., Davis L. J., Buscaglia J. Score-based likelihood for handwriting evidence / Forensic Sci. Int. 2012. Vol. 219. P. 129 – 140.

20. Neumann C., Evett I. W., Skerrett J. Quantifying the weight of evidence from a forensic fingerprint comparison: A new paradigm / J. Royal Statistical Society: Series A. 2012. Vol. 175. N. 2. P. 371 – 415.

21. Skerrett J., Neumann C., Mateos-Garcia I. A. Bayesian approach for interpreting shoemark evidence in forensic casework: Accounting for wear features / Forensic Sci. Int. 2011. Vol. 210. N 1 – 3. P. 26 – 30.

22. Zadora G., Ramos D. Evaluation of glass samples for forensic purposes — an application of likelihood ratio model and information-theoretical approach / Chemometr. Intell. Lab. Syst. 2010. Vol. 102. P. 63 – 83.

23. ENFSI Guideline for evaluative reporting in forensic science / Approved version 3.0.2016. http://enfsi.eu/wp-content/uploads/ 2016/09/m1_guideline.pdf (accessed February 26, 2018).

24. Gradusova O. B., Kuz’min S. A. Probability Interpretation of Forensic Evidence / Teor. Prakt. Sudeb. Ékspert. 2017. Vol. 12. N 4. P. 27 – 33 [in Russian].


Review

For citations:


Bebeshko G.I., Omel’yanyuk G.G., Usov A.I. The role and significance of the likelihood ratio concept in assessment and interpretation of the results of forensic activities. Industrial laboratory. Diagnostics of materials. 2018;84(6):70-76. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-6-70-76

Views: 741


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)