Nanostructured composites based on graphene and nanoparticles of cobalt in the composition of monoamine oxidase biosensors for determination of antidepressants
https://doi.org/10.26896/1028-6861-2018-84-8-5-14
Abstract
Amperometric monoamine oxidase biosensors based on screen-printed graphite electrodes modified with nanostructured reduced graphene oxide (RGO) composites and cobalt nanoparticles (CoNPs) were developed to determine antidepressant drug substances: tianeptine, thioridazine, and fluoxetine. Combinations of carbon nanomaterials with metal nanoparticles (nanocomposites) along with retaining the properties of individual components, also provide a new quality of the developed devices due to their joint contribution. The nanomaterial-modifier was applied to the surface of screen-printed graphite electrodes using dropwise evaporation. Fixing of RGO on the surface of the screen-printed graphite electrodes occurs due to electrostatic interaction between RGO carboxyl groups and amine groups of the amine derivative on the platform of polyester polyol (H20–NH2). The CoNPs were obtained electrochemically by the method of chronoamperometry at a potential E = – 1.0 V and different time of their accumulation (about 50 – 60 sec) on the electrode surface. According to the data of atomic force microscopy, the predominant size of CoNPs is (40 ± 2) and (78 ± 8) nm, depending on the time of electrochemical deposition of NPs. Data of electrochemical impedance spectroscopy show that nanocomposites RGO-chitosan/CoNPs and RGO-amine derivative on the polyester polyol (H20–NH2)/CoNPs platform are characterized by the lowest values of the charge transfer resistance. The use of those nanocomposites modifying the electrode surface significantly improved the analytical characteristics of the developed biosensors providing a wider range of operating concentrations from 1 × 10–4 to 5 × 10–9 mol/liter, greater sensitivity coefficient, better correlation coefficient, and lower limit of the detectable concentrations. A possibility of using biosensors to control the quality of antidepressants upon determination of the main active substance in medicinal drugs and biological fluids is shown. The lower limit of detectable concentrations (7 – 9) × 10–10 mol/liter is attained when using tyramine as a substrate for determination of fluoxetine, thioridazine and tianeptine, respectively.
About the Authors
E. P. MedyantsevaRussian Federation
Elvina P. Medyantseva
A. M. Butlerov Institute of Chemistry
Kazan
D. V. Brusnitsyn
Russian Federation
Daniil V. Brusnitsyn
A. M. Butlerov Institute of Chemistry
Kazan
R. V. Varlamova
Russian Federation
Regina M. Varlamova
A. M. Butlerov Institute of Chemistry
Kazan
O. A. Konovalova
Russian Federation
Olga A. Konovalova
Institute of Physics
Kazan
H. K. Budnikov
Russian Federation
Herman K. Budnikov
A. M. Butlerov Institute of Chemistry
Kazan
References
1. Kokkinos C., Economou A., Prodromidis M. I. Electrochemical immunosensors: Critical survey of different architectures and transduction strategies / Trends Anal. Chem. 2016. Vol. 79. P. 88 – 105.
2. Li F., Li Y., Feng J., et al. Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy / Biosens. Bioelectron. 2017. Vol. 87. P. 630 – 637.
3. Çeviketal E., Bahar Ö., Şenel M., et al. Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers / Biosens. Bioelectron. 2016. Vol. 86. P. 1074 – 1079.
4. De Jesus D. S., Couto C. M. C. M., Araujo A. N., et al. Amperometric biosensor based on monoamine oxidase (MAO) immobilized in sol/gel film for benzydamine determination in pharmaceuticals / J. Pharm. Biomed. Anal. 2003. Vol. 33. N 5. P. 983 – 990.
5. Sharma S., Raghav R., O’Kennedy R., et al. Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors / Enzyme Microb. Technol. 2016. Vol. 89. P. 15 – 30.
6. Lin C.-H., Wu C.-C., Kuo Y.-F. A high sensitive impedimetric salbutamol immunosensor based on the gold nanostructure-deposited screen-printed carbon electrode / J. Electroanal. Chem. 2016. Vol. 768. P. 27 – 33.
7. Feng J., Li Y., Li M., et al. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4 / Biosens. Bioelectron. 2017. Vol. 91. P. 441 – 448.
8. Zhu Q., Liu H., Zhang J., et al. Ultrasensitive QDs based electrochemiluminescent immunosensor for detecting ractopamine using AuNPs and Au nanoparticles@PDDA-graphene as amplifier / Sens. Actuators B. 2017. Vol. 243. P. 121 – 129.
9. Zhang X., Ding S.-N. Sandwich-structured electrogenerated chemiluminescence immunosensor based on dual-stabilizers-capped CdTe quantum dots as signal probes and Fe3O4-Au nanocomposites as magnetic separable carriers / Sens. Actuators B. 2017. Vol. 240. P. 1123 – 1133.
10. Roushani M., Valipour A. Using electrochemical oxidation of Rutin in modeling a novel andsensitive immunosensor based on Pt nanoparticle and graphene-ionicliquid-chitosan nanocomposite to detect human chorionic gonadotropin / Sens. Actuators B. 2016. Vol. 222. P. 1103 – 1111.
11. Wang Y., Fan D., Wu D., et al. Simple synthesis of silver nanoparticles functionalized cuprous oxide nanowires nanocomposites and its application in electrochemical immunosensor / Sens. Actuators B. 2016. Vol. 236. P. 241 – 248.
12. Wang S., Lu L., Yang M., et al. A novel cobalt hexacyanoferrate nanocomposite on CNT scaffold by seed medium and application for biosensor / Anal. Chim. Acta. 2009. Vol. 651. P. 220 – 226.
13. Lee H. U., Park C., Kim S. W. Immobilization of glucose oxidase onto cobalt based on silica core/shell nanoparticles as carrier / Process Biochem. 2012. Vol. 47. P. 1282 – 1286.
14. Shahrokhian S., Ghalkhani M., Adeli M., et al. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine / Biosens. Bioelectron. 2009. Vol. 24. P. 3235 – 3241.
15. Li T., Yang M., Li H. Label-free electrochemical detection of cancer marker based on graphene-cobalt hexacyanoferrate nanocomposite / J. Electroanal. Chem. 2011. Vol. 655. P. 50 – 55.
16. Bollella P., Fusco G., Tortolini C., et al. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection / Biosens. Bioelectron. 2017. Vol. 89. P. 152 – 166.
17. Pinto T. da S., Alves L. A., Cardozo G. de A., et al. Layer-by-layer self-assembly for carbon dots/chitosan-based multilayer: Morphology, thickness and molecular interactions / Mater. Chem. Phys. 2017. Vol. 186. P. 81 – 89.
18. Wang N., Pandit S., Ye L., et al. Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures / Carbon. 2017. Vol. 111. P. 402 – 410.
19. Wisitsoraat A., Mensing J. Ph., Karuwan C., et al. Printed organo-functionalized graphene for biosensing applications / Biosens. Bioelectron. 2017. Vol. 87. P. 7 – 17.
20. Benchettara A., Benchettara A. Electrochemical sensor based on nanoparticles of cobalt oxides for determination of glucose / Mater. Today: Proc. 2015. Vol. 2. P. 4212 – 4216.
21. Medyantseva É. P., Brusnitsyn D. V., Varlamova R. M., et al. Monoamine oxidase amperometric biosensor based on graphite electrodes and graphene oxide as a surface modifier for the determination of some antidepressants / Analitika Kontrol’. 2014. Vol. 18. N 4. P. 442 – 450 [in Russian].
22. Gorkin V. Z. Aminoksidazes and their importance in medicine. — Moscow: Meditsina, 1981. — 336 p. [in Russian].
23. Kulis Yu. Yu. Analytical systems based on immobilized enzymes. — Vilnius: Mokslas, 1981. — 200 p. [in Russian].
24. Brusnitsyn D. V., Medyantseva É. P., Varlamova R. M., et al. Amperometric determination of antidepressants using monoaminooxidase amperometric biosensors based screen-printed electrodes with multi-walled carbon nanotubes and nanoparticles of silver / Uch. Zap. Kazan. Univ. Ser. Estestv. Nauki. 2014. Vol. 156. Book 2. P. 37 – 50 [in Russian].
25. Mashkovskii M. D. Drug substance. — Moscow: Novaya Volna, 2017. — 1216 p. [in Russian].
26. Medyantseva E. P., Brusnitsyn D. V., Varlamova R. M., et al. Capabilities of amperometric monoamine oxidase biosensors based on screen-printed graphite electrodes modified with multiwall carbon nanotubes in the determination of some antidepressants / J. Anal. Chem. 2015. Vol 70. N 5. P. 535 – 539.
27. Medyantseva E. P., Brusnitsyn D. V., Varlamova R. M., et al. Effect of nanostructured materials as electrode surface modifiers on the analytical capacity of amperometric biosensors / Russ. J. Appl. Chem. 2015. Vol. 88. N 1. P. 40 – 49.
28. Brusnitsyn D. V., Medyantseva E. P., Varlamova R. M., et al. Carbon nanomaterials as electrode surface modifiers in development of amperometric monoamino oxidase biosensors / Inorg. Mater. 2016. Vol. 52. N 14. P. 1413 – 1419.
29. Shaidarova L. G., Chelnokova I. A., Romanova E. I., et al. Joint voltammetric determination of dopamine and uric acid / Russ. J. Appl. Chem. 2011. Vol. 84. N 2. P. 218 – 224.
30. Danilova L. A. Blood and urine tests. — St. Petersburg: Salit-Medkniga, 2003. — 128 p. [in Russian].
Review
For citations:
Medyantseva E.P., Brusnitsyn D.V., Varlamova R.V., Konovalova O.A., Budnikov H.K. Nanostructured composites based on graphene and nanoparticles of cobalt in the composition of monoamine oxidase biosensors for determination of antidepressants. Industrial laboratory. Diagnostics of materials. 2018;84(8):5-14. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-8-5-14