Preview

Industrial laboratory. Diagnostics of materials

Advanced search

METHOD OF AUTOMATED DETERMINATION OF MORPHOLOGY OF A SELECTIVE-PERMEABLE SURFACE OF NANOFILTRATION MEMBRANES OPMN-P AND OFAM-K

https://doi.org/10.26896/1028-6861-2018-84-9-34-40

Abstract

The  analytical review  and  determining method of the  morphology of structure inhomogeneities of selectively-permeable surface of polymer membranes are  presented in this  article. The  aim of the  work was   the    developing  and   research  of   automated  method  for   calculating  the    morphology  of microstructure   inhomogeneities  of  selectively  permeable  surface  of  nanofiltration  membranes OPMN-P and OFAM-K. The developed method of calculation allows to identify surface microstructural inhomogeneity of semi-permeable membranes and  the  contamination coefficient. The  obtained data about the microstructural inhomogeneities and the ratio of clogging of the membranes allow for the actual conditions of the  factory laboratories to  predict and  define  the  term of effective operation of nanofiltration by porous membranes OPMN-P and OFAM-K, which are equipped by roller elements of a baromembrane and  electrobaromembrane plants for concentration and  purification of technological solutions and  wastewater in the  electroplating, chemical and  food industries. Implementation of this method is  confirmed by  developed software  package for  identification of  surface microstructure inhomogeneities of semi-permeable membranes and the contamination coefficient. There is a methodology for automated calculation of the  average diameter value  of semi-permeable membranes clogging and  the  contamination coefficient of the  porous objects  in this  paper. The  software complex  based  on the  proposed method is developed and  allows  to determine the  microstructural inhomogeneity of the surface of  the   polymer membranes  OPMN-P and   OFAM-K  No.  2018611402RU. The  calculation method is based on the developed program that allows to study the description of the main functions of “imaging processing toolbox”. The use of modern tools to achieve the goal of this  work is shown by using the capabilities of the software package Matlab 2017. Practically, the method is implemented on the example of  the   process of  nanofiltration with   the   using of  semi-permeable  polymer membranes OPMN-P and  OFAM-K.

About the Authors

S. I. Lazarev
Tambov State Technical University
Russian Federation

Sergey I.  Lazarev.

Tambov.



Yu. M. Golovin
Tambov State Technical University
Russian Federation

Yury  M.  Golovin.

Tambov.



S. V. Kovalev
Tambov State Technical University
Russian Federation

Sergey V.  Kovalev.

Tambov.



V. Yu. Ryzhkin
Tambov State Technical University
Russian Federation

Vladimir Yu.  Ryzhkin.

Tambov.



References

1. Sazanova T. S., Vorotyntseva I. V., Kulikova V. B., Davletbaevaa I. M. An atomic force microscopy study of hybrid polymeric membranes: surface topographical analysis and estimation of pore size distribution / Petroleum Chem. 2016. Vol. 56. N 5. P. 427 – 435.

2. Hiesgen R., Helmly S., Galm I., Morawietz T., Handl M., Friedrich K. Microscopic analysis of current and mechanical properties of nafion studied by atomic force microscopy / Membranes. 2012. Vol. 2. N 4. P. 783 – 803.

3. Kiselev D. A., Silibin M. V., Solnyshkin A. V., Sysa A. V., Bdikin I. K. Dielectric and piezoelectric properties of composite copolymer poly(vinylidene fluoride-trifluoroethylene) with carbon nanotubes / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 2. P. 34 – 37 [in Russian].

4. Vasilieva V. I., Zabolotsky V. I., Zaichenko N. A. Grechkina M. V., Botovo T. S., Agapov B. L. Microscopic analysis of the surface morphology of ion-exchange membranes / Vestn. VGU. 2007. N 2. P. 7 – 16 [in Russian].

5. Vasileva V. I., Kranina N. A., Malykhin M. D., Akberova E. M., Zhiltsova A. V. The surface inhomogeneity of ion-exchange membranes by SEM and AFM data / J. Surface Invest. X-ray Synchrotron Neutron Techn. 2013. Vol. 7. N 1. P. 144 – 153.

6. Fang Y., Duranceau S. Article study of the effect of nanoparticles and surface morphology on reverse osmosis and nanofiltration membrane productivity / Membranes. 2013. Vol. 3. P. 196 – 225.

7. Kumar S., Nandi B., Guria C., Mandal A. Oil removal from produced water by ultrafiltration using polysulfone membrane / Braz. J. Chem. Eng. 2017. Vol. 34. N 2. P. 583 – 596.

8. Karagьndьz A., Dizge N. Investigation of membrane biofouling in cross-flow ultrafiltration of biological suspension / J. Membra. Sci. Technol. 2013. Vol. 3. N 1. P. 1 – 5.

9. Agboola O., Maree J., Mbaya R. Characterization and performance of nanofiltration membranes / Environmental chemistry letters. 2014. Vol. 12. N 2. P. 241 – 255.

10. Venkata Z., Murthy P., Choudhary A. Separation and estimation of nanofiltration membrane transport parameters for cerium and neodymium / Rare metals. 2012. Vol. 31. N 5. P. 500 – 506.

11. Sanaei P., Cummings L. Flow and fouling in membrane filters: effects of membrane morphology / J. Fluid Mech. 2017. Vol. 818. N 10. P. 744 – 771.

12. Sitnikova V. E. Spectroscopic study of the structure of polymer dispersed systems: author’s abstract of Candidate’s thesis. — Tver, 2015. — 24 p. [in Russian].

13. Kalinin V. V., Filippov A. N., Khanukaeva D. Yu. Investigation of the morphology of membranes using atomic force microscopy in mathematical modeling of diffusion processes / Trudu RDU Nefti Gaza (NIU) im. I. M. Gubkina. Avtomatiz. Modelir. Йnergoobesp. 2012. N 1(266). P. 129 – 136 [in Russian].

14. Kotov V. V., Grechkina M. V., Peregonchaya O. V., Zyablov A. N. State of the surface of anion-exchange membranes MA-40 and MA-41 sorbed pectin / Sorbts. Khromatogr. Prots. 2016. Vol. 16. N 1. P. 118 – 122 [in Russian].

15. Zaichenko N. A., Vasilyeva V. I., Grigorchuk O. V., Zyablov A. N., Grechkina M. V. Estimation of the surface porosity of cation-exchange membranes by atomic force microscopy / Sorbts. Khromatogr. Prots. 2010. Vol. 10. N 5. P. 745 – 749 [in Russian].

16. Powell L., Hilal N., Wright C. Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes / Desalination. 2017. Vol. 404. P. 313 – 321.

17. Johnson D., Hilal N. Characterisation and quantification of membrane surface properties using atomic force microscopy: а comprehensive review / Desalination. 2015. Vol. 356. P. 149 – 164.

18. Elhadidy A., Peldszus S., Van Dyke M. Development of a pore construction data analysis technique for investigating pore size distribution of ultrafiltration membranes by atomic force microscopy / J. Membrane Sci. 2013. Vol. 429. P. 373 – 383.

19. Stawikowska J., Livingston A. Assessment of atomic force microscopy for characterisation of nanofiltration membranes / J. Membrane Sci. 2013. Vol. 425 – 426. P. 58 – 70.

20. Chernyakova K. V., Vrublevskiy I. A., Al-Kamali M. F. S. Kh. Digital processing and analysis of 2D images of nanotubular titanium oxide films using ImageJ / Telecommunications: networks and technologies, algebraic coding and data security: materials of an international scientific and technical seminar. — Minsk: BSUIR, 2015. P. 86 – 90 [in Russian].

21. Kopachev E. S., Nozdrachev S. A., Petrushin V. N., Rudyak Yu. V., Rytikov G. O., Nazarov V. G. A complex technique of surface image characterization for polymer composites / Fiz. Mezomekh. 2015. Vol. 18. N 6. P. 98 – 110 [in Russian].

22. Jurjo D., Magluta C., Roitman N., Gonзalves P. Analysis of the structural behavior of a membrane using digital image processing / Mechanical Systems and Signal Processing. 2015. Vol. 54 – 55. P. 394 – 404.

23. http://www.modificator.ru/ad/nexsys.html (accessed 04.05.2018) [in Russian].

24. Computer Program State Registration Certificate 2012610185. Estimation of the area of ion-conducting surface sections of heterogeneous ion-exchange membranes / Sirota E. A., Kranina N. A., Vasilyeva V. I.; owner VGU; registered with FIPS 10.01.2012. Byull. N 1 [in Russian].

25. Sirota E. A., Kranina N. A., Vasilyeva V. I., Malykhin M. D., Selemenev V. F. Development and experimental approbation of software for determining the fraction of the ion-conducting surface of membranes from scanning electron microscopy / Vestnik VGU. 2011. N 2. P. 53 – 59 [in Russian].

26. Computer Program State Registration Certificate 2018611402. Calculation of surface morphology parameters of nanofiltration membranes. / Lazarev S. I., Ryzhkin V. Yu., Kovaleva O. A., Golovin Yu. M., Kholodilin V. N.; owner TSTU; registered with FIPS 01.02.2018. Byull. N 2 [in Russian].

27. Membranes, filter elements, membrane technologies. Catalog. — Vladimir: NTTs «Vladipor», 2004. — 22 p. [in Russian]

28. Bon A. I., Dzyubenko V. G., Shishova I. I. Asymmetric composite reverse osmosis membranes / Vysokomol. Soed. 1993. Vol. 35. N 7. P. 922 – 932 [in Russian].

29. Vasileva V. I., Akberova E. M., Zhiltsova A. V., Chernykh E. I., Sirota E. A., Agapov B. L. SEM diagnostics of the surface of MK-40 and MA-40 heterogeneous ion-exchange membranes in the swollen state after thermal treatment / Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2013. Vol. 7. N 5. P. 833 – 840.

30. Kovaleva O. A., Kovalev S. V. Separation of molasses distillery slop on UFM-50, UPM-50M, OPMN-P, and OFAM-K porous membranes / Petroleum Chemistry. 2017. Vol. 57. N 6. P. 542 – 551.


Review

For citations:


Lazarev S.I., Golovin Yu.M., Kovalev S.V., Ryzhkin V.Yu. METHOD OF AUTOMATED DETERMINATION OF MORPHOLOGY OF A SELECTIVE-PERMEABLE SURFACE OF NANOFILTRATION MEMBRANES OPMN-P AND OFAM-K. Industrial laboratory. Diagnostics of materials. 2018;84(9):34-40. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-9-34-40

Views: 546


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)