Steady fatigue crack growth: micromechanism and mathematical modeling
https://doi.org/10.26896/1028-6861-2018-84-11-52-69
Abstract
A universal energy-intensive micromechanism of periodic splitting-rupture (PSR) is revealed which proceeds at the front of the fatigue cracks in metallic materials, providing their steady growth, forming T-shaped crack tip and striated microrelief of the fracture surface. The PSR micromechanism is caused by a critical (prior to fracture) fragmentated structure formed in the area of the crack front where the material is subjected to multiple and increasing plastic deformation. This universal prefracture structure is a final stage of the evolution of the deformational structures emerged in front of the fatigue crack at the stage of stable crack growth in metallic materials with different initial structural states. This is responsible for universality of PSR micromechanism and fatigue striations. Fatigue striations are the traces of extending crack front with T-shaped tip formed during brittle transverse microsplitting along the overstressed boundaries of critical fragmentated structure. Based on 3D finite element modeling of the stress-strain state in front of the cracks with T-shaped tip, it is established that the value and the location of maximum of normalized in-plain stresses (acting in front of crack tip in the plane of crack along the normal to its front) are close or coincide for the cracks of different configuration and different types of tensile load under condition that splitting in the T-shaped crack tip is considerably less than the crack length. Taking into account the PSR micromechanism and asymptotic stress distribution in front of T-shaped crack tip the physically based mathematical model for steady fatigue crack growth is developed along with the techniques for prediction of steady fatigue crack growth in full-scale components under simple and complex loading cycles.
About the Author
N. V. TumanovRussian Federation
Nikolay V Tumanov.
Moscow
References
1. Strength analysis and tests. Method of metal fatigue estimation based on fatigue striations spacing measurement. Methodical recommendations. MR 189-86. — Moscow: VNIINMASh, 1986. — 36 p. [in Russian].
2. Romvari P, Tot L., Nad’ D. Analysis of fatigue crack growth regularities in metals / Probl. Prochn. 1980. N 12. P 18 - 28 [in Russian].
3. Paris P., Erdogan F. A critical analysis of crack propagation laws / Journal of Basic Engineering (Trans. ASME). 1963. N 12. P. 528 - 534.
4. Nozhnitskii Yu. A., Tumanov N. V, Cherkasova S. A., Lavrent’eva M. A. Fractographic methods of residual life estimation for aero engine discs / Vestn. Ufim. Gos. Aviats. Tekhn. Univ. 2011. Vol. 16. N 4(44). P 39 - 45 [in Russian].
5. Romaniv O. N., Yarema S. Ya., Nikiforchin G. N., Makhu-tov N. A., Stadnik M. M. Fatigue and cyclic crack resistance of structural materials. Vol. 4 / Fracture mechanics and strength of materials: Handbook in 4 volumes / Ed. V. V. Pana-syuk. — Kiev: Naukova dumka, 1990. — 680 p. [in Russian].
6. Rybin V. V Large plastic deformation and fracture of metals. — Moscow: Metallurgiya, 1986. — 224 p. [in Russian].
7. Rybin V. V. Structurally-kinetic aspects of physics of intense plastic deformation / Izv. Vuzov. Fizika. 1991. N 3. P 7 - 22 [in Russian].
8. Laird C., Smith G. C. Crack propagation in high stress fatigue / Philosophical Magazine. 1962. Vol. 7. N 77. P. 847 - 857.
9. Pelloux R. M. N. Mechanisms of formation of ductile fatigue striations / Trans. ASM. 1969. Vol. 62. N1.P 281 - 285.
10. Bowles C. Q., Broek D. On the formation of fatigue striations / Int. Journal of Fracture Mechanics. 1972. Vol. 8. N 1. P 75 - 85.
11. Neumann P. New experiments concerning the slip process at propagating fatigue cracks / Acta Metallurgica. 1974. Vol. 22. P. 1155-1165.
12. Ekobori T. Scientific bases of strength and fracture. — Kiev: Naukova dumka, 1978. — 352 p. [in Russian].
13. Krasovskii A. Ya. Mechanisms of fatigue crack growth in metals / Probl. Prochn. 1980. N 10. P 65 - 72 [in Russian].
14. Schijve J. Fatigue of structures and materials. — Springer, 2009. — 621 p.
15. Pokluda J., Sandera P Micromechanisms of fracture and fatigue. — Springer, 2010. — 293 p.
16. Shanyavskii A. A. Scale levels of fatigue processes in metals / Fiz. Mezomekh. 2014. Vol. 17. N 6. P 87 - 98 [in Russian].
17. Shtremel’ M. A. Fracture. In 2 volumes. Vol. 2. Fracture of structures. — Moscow: Izd. Dom MISiS, 2015. — 976 p. [in Russian].
18. Fridman Ya. B. Mechanical properties of metals. In 2 volumes. Vol. 1. Deformation and fracture. — Moscow: Mashinostroenie, 1974. — 472 p. [in Russian].
19. Gordeeva T. A., Zhegina M. R Failure analysis at estimation of materials reliability. — Moscow: Mashinostroenie, 1978. — 200 p. [in Russian].
20. Engel’ L., Klingele G. Scanning electron microscopy. Fracture. Handbook. — Moscow: Metallurgiya, 1986. — 232 p. [in Russian].
21. Kotsan’da S. Fatigue cracking of metals. — Moscow: Metallurgiya, 1990. — 623 p. [in Russian].
22. Encyclopedic dictionary on metallurgy. In 2 volumes / Ed. N. P Lyakishev. Vol. 1. — M: Intermet Inzhiniring, 2000. — 412 p. [in Russian].
23. Klevtsov G. V., Botvina L. R., Klevtsova N. A., Limar’ L. V. Failure analysis of metallic materials and structures. — Moscow: MISiS, 2007. — 264 p. [in Russian].
24. Nicolis G., Prigozhin I. Self-organization in nonequilibrium systems. — New York: John Wiley & Sons, 1977.
25. Gaponov-Grekhov A. V, Rabinovich M. I. Self-structures. Chaotic dynamics of ensembles / Nonlinear waves. Structures and bifurcations. — Moscow: Nauka, 1987. P 7 - 44 [in Russian].
26. Zolotarevskii N. Yu., Rybin V. V Materials science and texture formation at deformation of metallic materials. — Moscow: Yurait, 2018. — 207 p. [in Russian].
27. Indenbom V. L., Orlov A. N. Physics of strength today / Fiz. Met. Metalloved. 1992. N 4. P 4 - 7 [in Russian].
28. Grosskreutz J. C. The mechanisms of metal fatigue (II) / Physica Status Solidi (b). 1971. Vol. 47. N2.P 359 - 396.
29. Grosskreutz J. C., Shaw G. G. Fine subgrain structure adjacent to fatigue cracks / Acta Metallurgica. 1972. Vol. 20. N 4. P. 523 - 528.
30. Klesnil M., Lukas P. Fatigue of metallic materials. — Elsevier, 1992. — 270 p.
31. Yakovleva T. Yu. Local plastic deformation and fatigue of metals. — Kiev: Naukova dumka, 2003. — 236 p. [in Russian].
32. Knyazeva E. N., Kurdyumov S. P. Bases of synergetics. — St. Petersburg: Aleteia, 2002. — 414 p. [in Russian].
33. Langford. G., Cohen M. Strain hardening of iron by severe plastic deformation / Trans. ASM. 1969. Vol. 62. N 3. P. 623 - 638.
34. Likhachev V A., Nikonov Yu. A., Petrova T. G., Ponomarev A. P Strength of deformed alloy Mo-Re / Probl. Prochn. 1977. N 3. P 99 - 101 [in Russian].
35. Trefilov V I., Mil’man Yu. V, Firstov S. A. Physical bases of strength of refractory metals. — Kiev: Naukova dumka, 1975. — 315 p. [in Russian].
36. Cook J., Gordon J. E. A mechanism for the control of crack propagation in all-brittle systems / Proc. Royal Soc. Ser. A. 1964. Vol. 282. N 1393. P 508 - 520.
37. Tumanov N. V Stages of fatigue crack kinetics and mechanism of periodic splitting-rupture / Proc. 1st International conference “Deformation and fracture of materials”. Vol. 1. — Moscow: IMET RAN, 2006. P 85 - 87 [in Russian].
38. Murakami Y, Shiraishi N., Furukawa K. Estimation of service loading from the width and height of fatigue striations of 2017-T4 Al alloy / Fatigue and Fracture of Engineering Materials and Structures. 1991. Vol. 14. N 11. P 897 - 906.
39. Bowles C. Q., Schijve J. Crack tip geometry for fatigue cracks grown in air and vacuum / Fatigue Mechanisms. Advances in Quantitative Measurement of Physical Damage. — ASTM STP 811, 1983. P 400-426.
40. Botvina L. R. The basic concepts and definitions. Macro- and microstructure of fracture surfaces / Machine construction. Encyclopedia in 40 volumes. Vol. II-1. Physical and mechanical properties. Tests of mechanical materials. — Moscow: Mashinostroenie, 2010. P 746 - 758 [in Russian].
41. Limar’ L. V Failure analysis of aviation parts of titanic alloys. — Verkhnyaya Salda: OAO «Korporatsiya «VSMPO-AVISMA», 2011. — 157 p. [in Russian].
42. Russian explanatory dictionary. In 4 volumes / Ed. D. N. Ushakov. Vol. 1. — Moscow: Terra, 1996. — 824 p. [in Russian].
43. Tumanov N. V., Lavrent’eva M. A. Fundamental and applied aspects of fatigue crack kinetics / Proc. 2nd International conference “Basic researches and innovative technology in machine construction”. — Moscow: IMASh RAN, 2012. P. 442 - 448 [in Russian].
44. Shtremel’ M. A. Fracture. In 2 volumes. Vol. 1. Fracture of a material. — Moscow: Izd. Dom MISiS, 2014. — 670 p. [in Russian].
45. Siratori M., Mi^si T., Matsusita Kh. Computing fracture mechanics. — Moscow: Mir, 1986. — 334 p. [Russian translation].
46. He M. Y., Heredia F. E., Wissuchek D. J., Shaw M. C., Evans A. G. The mechanism of crack growth in layered materials / Acta Metall. Mater. 1993. Vol. 41. N 4. P 1223 - 1228.
47. Tumanov N. V., Lavrent’eva M. A., Cherkasova S. A. Reconstitution and prediction of fatigue crack growth in aero engine discs / Konvers. Mashinostr. 2005. N 4 - 5. P 98 - 106 [in Russian].
48. Kan R. U. The coming of materials science. — Nizhnii Novgorod: Izd. NNGU im. N. I. Lobachevskogo, 2011. — 619 p. [in Russian].
49. Tumanov N. V. Failure mechanisms under static and cyclic loading / Tyazh. Mashinostr. 2010. N 4. P 21 - 25 [in Russian].
50. Matokhnyuk L. E., Yakovleva T. Yu. Influence of loading frequency on regularities and micromechanisms of fatigue crack growth in titanic alloys / Probl. Prochn. 1988. N 1. P 21 -31 [in Russian].
51. Bates R. C., Clark W. G. Fractography and fracture mechanics / Trans. ASM. 1969. Vol. 62. N 2. P 380 - 389.
52. Erdogan F., Sih G. C. On the crack extension in plates under plane loading and transverse shear / Journal of Basic Engineering. 1963. N 12. P 519 - 525.
53. Cherepanov G. P. Fracture mechanics. — Moscow - Izhevsk: Institut komp’yuternykh issledovanii, 2012. — 872 p. [in Russian].
54. Faidiga G., Zalosnik B. Determining a kink angle of a crack in mixed mode fracture using maximum energy release rate, SED and MTS criteria / Journal of Multidisciplinary Engineering and Technology. 2015. Vol. 2. Issue 1. P 356 - 362.
55. Morozov E. M. Fracture mechanics of bodies with cracks / Machine construction: Encyclopedia in 40 volumes. Vol. I-3. In 2 parts. Part 1. Dynamics and strength of machines. Theory of mechanisms and machines. — Moscow: Mashinostroenie, 1994. P 142 - 164.
56. Tumanov N. V, Cherkasova S. A., Lavrent’eva M. A., Vo-rob’eva N. A. Study of low cycle fatigue crack growth mechanisms in aero engine discs and estimation of disks residual life / Vestn. Samar. Gos. Aerokosm. Univ. 2011. N 3(27). Part 2. P 175 - 184.
Review
For citations:
Tumanov N.V. Steady fatigue crack growth: micromechanism and mathematical modeling. Industrial laboratory. Diagnostics of materials. 2018;84(11):52-69. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-11-52-69