Analysis of germanium dioxide using direct current arc atomic emission spectrometry with preconcentration of trace elements
https://doi.org/10.26896/1028-6861-2019-85-1-II-50-55
Abstract
A method for trace element concentration in the microwave accelerated reaction system MARS 5 is developed. The vapor-phase distillation was used to remove high-purity germanium dioxide matrix as volatile germanium tetrachloride (GeCl4). We specified operating conditions of the microwave system and chose a halogenating agent and its volume. The method of quantitative chemical analysis of germanium dioxide by direct current arc atomic emission spectrometry (DCA AES) was developed. The unit for analysis is equipped with a multichannel spectrum analyzer MAÉS produced by «VMK-Optoélektronika». We also determined the residual content of germanium in the resulting solutions after vapor-phase distillation. The limits for detection of 46 trace elements in DCA AES analysis of germanium dioxide with preconcentration of trace elements ranged from 0.5 ng/g to 1 μg/g. We carried out validation of the combined procedure using «spike test».
About the Authors
T. Ya. GuselnikovaRussian Federation
Novosibirsk
A. R. Tsygankova
Russian Federation
Novosibirsk
A. I. Saprykin
Russian Federation
Novosibirsk
References
1. RF Pat. N 2300784, G01T 3/06, G01T 1/202. The method for detecting the neutron flux source and gamma radiation / Shakhovsky V. V., et al. Publ. 2007 [in Russian].
2. Meruva A. R., Raparthi S., Kumar S. J. Modified matrix volatilization setup for characterization of high purity germanium / Talanta. 2016. Vol. 146. P. 259 – 265.
3. Naumov A. V. World market of germanium and its prospects / Rus. J. Non-Ferrous Metals. 2007. Vol. 48. N 4. P. 265 – 272.
4. Technical Regulations. 48-4-545–90. Attachment 4. Germanium dioxide. — Moscow: Giredmet, 1990 [in Russian].
5. Miklin D. G., Karpov Yu. A., Orlova V. A. Method of analytical control of high-purity tungsten / Vysokochist. veshch. 1993. N 2. P. 13 – 20 [in Russian].
6. Nazarenko A. V. Analytical chemistry of germanium. — Moscow: Nauka, 1973. — 264 p. [in Russian].
7. The course of inorganic chemistry. Part 1 / A. V. Novoselova (Ed.). — Moscow: IIL, 1963. — 922 p. [in Russian].
8. Medvedev N. S., Shaverina A. V., Tsygankova A. R., et al. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements / Talanta. 2016. Vol. 155. P. 358 – 362.
9. Petrova N. I., Tsygankova A. R., Saprykin A. I. Analysis of high-purity germanium dioxide by atomic absorption spectrometry / Inorg. Mater. 2015. Vol. 51. N 1. P. 57 – 61.
10. Chanysheva T. A., Shelpakova I. R., Saprykin A. I. Determination of impurities in high-purity germanium dioxide by atomic-emission spectral method / Zavod. Lab. Diagn. Mater. 2009. Vol. 75. N 1. P. 7 – 10 [in Russian].
11. Karandashev V. K., Bezrukov L. B., Kornoukhov V. N., et al. Analysis of germanium and germanium dioxide samples by mass-spectrometry and atomic emission spectroscopy / J. Anal. Chem. 2009. Vol. 64. N 3. P. 259 – 267.
12. Ueng R. L., Sahayam A. C., Jiang S. J., et al. Microwave-assisted volatilization of chlorides of Ge and Se for the determination of trace impurities in high purity Ge and Se by ICP-MS / J. Anal. At. Spectrom. 2004. Vol. 19. N 5. P. 681 – 684.
13. Niemelä M., Kola H., Perämäki P. Determination of trace impurities in germanium dioxide by ICP-OES, ICP-MS and ETAAS after matrix volatilization: a long-run performance of the method / Anal. Sci. 2014. Vol. 30. P. 735 – 738.
14. Labusov V. A. Devices and systems for atomic emission spectroscopy produced by «VMK-Optoélektronika»: State-of-the-art / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 1. Part II. P. 12 – 21 [in Russian].
Review
For citations:
Guselnikova T.Ya., Tsygankova A.R., Saprykin A.I. Analysis of germanium dioxide using direct current arc atomic emission spectrometry with preconcentration of trace elements. Industrial laboratory. Diagnostics of materials. 2019;85(1(II)):50-55. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-1-II-50-55