Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков


Полный текст:


Nowadays, widespread application of engineered nanoparticles (ENPs) inevitably leads to their release into the environment. Soils are regarded as the ultimate sink for ENPs. The study on the mobility of ENPs in soils is important in the assessment of potential risks related to their toxicity. The behavior of ENPs depends not only on the parameters of soil, but also on the exposure scenarios, namely, the amount of ENPs trapped in soil. We studied the mobility of cerium dioxide nanoparticles (nCeO2) in soils at different exposure scenarios. The relationship between the mobility of nCeO2 and their concentration in the soil within the range 1 – 1000 ìg/g is evaluated. It is shown that the mobility of nCeO2 decreases with a decrease in their concentration in the soil and attains the minimum value when the concentration of nCeO2 goes below 10 ìg/g. In relative units, only about 0.1 – 0.2% of nCeO2 (in aforementioned concentration range) exhibit mobility and can migrate in the soil profile under saturated conditions. The lion’s share of nCeO2 (about 99.8%) remains immobile in the soil. Evidently, the vertical transport of nCeO2 in soil profile should depend on the volume of released suspensions. In the case of small or moderate wet deposition, nanoparticles will accumulate in upper soil horizons characterized with the highest biological activity and thus can affect the soil inhabitants (plant roots, earthworms, insects, microorganisms, etc.).

Об авторах

M. S. Ermolin
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

N. N. Fedyunina
National University of Science and Technology “MISIS"

Список литературы

1. Stark W. J., Stoessel P. R., Wohlleben W., and Hafner A. Industrial applications of nanoparticles / Chem. Soc. Rev. 2015. Vol. 44. P. 5793 – 5805.

2. Gobbo O. L., Sjaastad K., Radomski M. W., et al. Magnetic Nanoparticles in Cancer Theranostics / Theranostics. 2015. Vol. 5. P. 1249 – 1263.

3. DeRosa M. C., Monreal C., Schnitzer M., et al. Nanotechnology in fertilizers / Nat. Nanotechnol. 2010. Vol. 5. P. 91.

4. Shtykov S. N. Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry / Ed. by S. N. Shtykov. — Berlin: De Gruyter, 2018.

5. Peijnenburg W., Praetorius A., Scott-Fordsmand J., Cornelis G. Fate assessment of engineered nanoparticles in solids dominated media — Current insights and the way forward / Environ. Pollut. (Oxford, U.K.). 2016. Vol. 218. P. 1365 – 1369.

6. Nowack B. and Bucheli T. D. Occurrence, behavior and effects of nanoparticles in the environment / Environ. Pollut. (Oxford, U.K.). 2007. Vol. 150. P.5–22.

7. Buzea C., Pacheco I. I., and Robbie K. Nanomaterials and nanoparticles: Sources and toxicity / Biointerphases. 2007. Vol. 2. P.17–71.

8. Cornelis G., Hund-Rinke K., Kuhlbusch T., et al. Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review / Crit. Rev. Environ. Sci. Technol. 2014. Vol. 44. P. 2720 – 2764.

9. Wagner S., Gondikas A., Neubauer E., et al. Spot the Difference: Engineered and Natural Nanoparticles in the Environment — Release, Behavior, and Fate / Angew. Chem. Int. Ed. 2014. Vol. 53. P. 12398 – 12419.

10. Darlington T. K., Neigh A. M., Spencer M. T., et al. Nanoparticle characteristics affecting environmental fate and transport through soil / Environ. Toxicol. Chem. 2009. Vol. 28. P. 1191 – 1199.

11. Quevedo I. R. and Tufenkji N. Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand / Environ. Sci. Technol. 2012. Vol. 46. P. 4449 – 4457.

12. Cornelis G., Doolette C., Thomas M., et al. Retention and dissolution of engineered silver nanoparticles in natural soils / Soil Sci. Soc. Am. J. 2012. Vol. 76. P. 891 – 902.

13. Fang J., Shan X. Q., Wen B., et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns / Environ. Pollut. (Oxford, U.K.). 2009. Vol. 157. P. 1101 – 1109.

14. Wang Y. G., Li Y. S., Kim H., et al. Transport and retention of fullerene nanoparticles in natural soils / J. Environ. Qual. 2010. Vol. 39. P. 1925 – 1933.

15. Cornelis G., Pang L., Doolette C., et al. Transport of silver nanoparticles in saturated columns of natural soils / Sci. Total Environ. 2013. Vol. 463 – 464. P. 120 – 130.

16. Jaisi D. P. and Elimelech M. Single-walled carbon nanotubes exhibit limited transport in soil columns / Environ. Sci. Technol. 2009. Vol. 43. P. 9161 – 9166.

17. Keller A. A. and Lazareva A. Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local / Environ. Sci. Technol. Lett. 2014. Vol. 1. P.65–70.

18. Rico C. M., Lee S. C., Rubenecia R., et al. Cerium Oxide Nanoparticles Impact Yield and Modify Nutritional Parameters in Wheat (Triticum aestivum L.) / J. Agric. Food Chem. 2014. Vol. 62. P. 9669 – 9675.

19. Rico C. M., Barrios A. C., Tan W., et al. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles / Environ. Sci. Pollut. Res. 2015. Vol. 22. P. 10551 – 10558.

20. Barrios A. C., Rico C. M., Trujillo-Reyes J., et al. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants / Sci. Total Environ. 2016. Vol. 563 – 564. P. 956 – 964.

21. Trujillo-Reyes J., Vilchis-Nestor A. R., Majumdar S., et al. Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings / J. Hazard. Mater. 2013. Vol. 263. P. 677 – 684.

22. Erdakos G. B., Bhave P. V., Pouliot G. A., et al. Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality / Environ. Sci. Technol. 2014. Vol. 48. P. 12775 – 12782.

23. Lopez-Moreno M. L., de la Rosa G., Hernandez-Viezcas J., et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants / Environ. Sci. Technol. 2010. Vol. 44. P. 7315 – 7320.

24. Yang X., Pan H., Wang P., Zhao F. J. Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana / J. Hazard. Mater. 2017. Vol. 322. P. 292 – 300.

25. Roh J.-Y., Park Y.-K., Park K., and Choi J. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints / Environ. Toxicol. Pharmacol. 2010. Vol. 29. P. 167 – 172.

26. Collin B., Oostveen E., Tsyusko O., Unrine J. M. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans / Environ. Sci. Technol. 2014. Vol. 48. P. 1280 – 1289.

27. Zhang H., He X., Zhang Z., et al. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations / Environ. Sci. Technol. 2011. Vol. 45. P. 3725 – 3730.

28. Lahive E., Jurkschat K., Shaw B. J., et al. Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects / Environ. Chem. 2014. Vol. 11. P. 268 – 278.

29. Vittori Antisari L., Carbone S., Gatti A., et al. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil / Soil Biol. Biochem. 2013. Vol. 60. P.87–94.

30. Karandashev V. K., Turanov A. N., Orlova T. A., et al. Use of the inductively coupled plasma mass spectrometry for element analysis of environmental objects / Inorg. Mater. 2008. Vol. 44. P. 1491 – 1500.

31. Fedotov P. S., Ermolin M. S., Ivaneev A. I., et al. Continuous-flow leaching in a rotating coiled column for studies on the mobility of toxic elements in dust samples collected near a metallurgic plant / Chemosphere. 2016. Vol. 146. P. 371 – 378.

32. Fedotov P. S., Savonina E. Y., Spivakov B. Ya., Wennrich R. Possibilities for the harmonization of methods of the dynamic fractionation of elements in soils and bottom sediments / J. Anal. Chem. 2012. Vol. 67. P. 851 – 861.

33. Ermolin M. S., Fedyunina N. N., Karandashev V. K., Fedotov P. S. Study on mobility of cerium oxide nanoparticles in soils using dynamic extraction in microcolumn and rotating coiled column / J. Anal. Chem. 2019. Vol. 74 (in press).


Для цитирования:

Ermolin M.S., Fedyunina N.N. MOBILITY OF CERIUM DIOXIDE NANOPARTICLES IN SOILS AT DIFFERENT EXPOSURE SCENARIOS. Заводская лаборатория. Диагностика материалов. 2019;85(5):5-10.

For citation:

Ermolin M.S., Fedyunina N.N. MOBILITY OF CERIUM DIOXIDE NANOPARTICLES IN SOILS AT DIFFERENT EXPOSURE SCENARIOS. Industrial laboratory. Diagnostics of materials. 2019;85(5):5-10.

Просмотров: 367

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)