Preview

Industrial laboratory. Diagnostics of materials

Advanced search

THE IMPACT OF STRESS CONCENTRATORS ON THE STRUCTURAL STRENGTH OF CAST TURBINE BLADES OF AIRCRAFT ENGINES

https://doi.org/10.26896/1028-6861-2019-85-5-52-66

Abstract

Assessing of the quality parameters of the blade manufacture, which can affect their operational performance, is an important step in determining the causes of turbine blade destruction. Manufacturing defects, despite their great diversity, tend to be stress concentrators. Apart from the defects listed in the specifications to be avoided upon blade manufacturing, we mean also various kinds of defects identified as concentrators that contribute to the destruction of the blades in operation. Assessment of the blade quality suggests identification and analysis of the defects, as well as determination of the technological stage at which they have been formed. For cooled turbine blades this is the foundry stage of their manufacture. Studies of the blades damaged in operation, revealed that despite the control and rejection of blades in the manufacture, the materials of the turbine blades installed on aircraft engines, contain casting defects. The revealed casting defects are shown to affect the strength characteristics and durability of turbine blades and contribute to their destruction through fatigue fracture in operation. The special features of the quality characteristics of the single-crystal turbine blades, affecting their performance, and defects that contribute to their destruction in operation are highlighted. The necessity of improving the valuation, standardization and quality control both at the stages of design and manufacture of blades is shown.

About the Authors

A. N. Petukhov
P. I. Baranov CIAM
Russian Federation


F. D. Kiselev
FSBE "AFCR" MDRF
Russian Federation


References

1. Vladhnirov V I. Physical nature of fracture of metals. — Moscow: Mashinostroenie, 1984. — 280 p. [in Russian].

2. Suvorov A. L. Defects in metals. — Moscow: Nauka, 1984. — 176 p. [in Russian].

3. Epishin A. I., Link T. Of the Porosity of single crystals of Nickel heat-resistant alloys / Izv. AN SSSR. Metally 2005. N 6. P85-9 3 [in Russian].

4. Iskhodzhanova I. V, Bondarenko Yu. A., Lapteva M. A. Evaluation of structure of monocrystal heat-resistant Nickel alloy, obtained at different conditions of directional solidification, by using methods of quantitative analysis of video images / Aviats. Mater. Tekhnol. 2015. N 12. P 54 - 62.

5. Kablov E. N. Production of turbine blades by the method of directional solidification / Gazoturbin. Tekhnol. 2000. N 3. P73-8 2 [in Russian].

6. Lutzow V G., Kostyukova E. P., Toloraya V N., et al. A study of the degree of perfection of crystals of Nickel heat-resistant alloy / Izv. AN SSSR. Metally. 1978. N 3. P 166 - 170.

7. Shalin R. E., Svetlov I. L., Kachanov E. В., et al. Single Crystals of Nickel heat-resistant alloys. — Moscow: Mashinostroenie, 1997. — 336 p. [in Russian].

8. Epishin A. I. Structure, anisotropy of physical and mechanical properties and mechanisms of high-temperature creep of single crystals of heat-resistant nickel alloys. Ph.D. Dissertation. — Moscow, 2007. — 261 p. [in Russian].

9. Pollock Т. M., Tin S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties / Journal of propulsion and power. 2006. Vol. 22. N 2. March -April. P 667 - 672.

10. Shollock B. A. Solidification defects in directionally solidifiednickel base superalloys: problem solving using electron backscattered diffraction / Mater. Science and Technology. 2006. Vol. 22. N 11. P 1338 - 1342.

11. Price F. R., Mueller B. A. ANS Land Based Turbine casting Initiative, http://www.netl.doe.gov/ publications/ proceedings/ 97/97ats/ ats$pdf/ATS5-7.pdf

12. Kablov E. N., Toloraya, V N., Ostroukhova G. A., Alyoshin I. N. Study of growth defects on the banding in single crystal castings from carbon-free heat-resistant alloys / Dvigatel'. 2010. N 6(72). P 65 - 71 [in Russian].

13. Vyushkov V N. et al. Determination of the sub-grain disorientation in single-crystal turbine blades / Aviats. Promyshl. 2010. N 4. P 61 - 66 [in Russian].

14. Sidokhin E. E, Sidokhin V A., Khayutin S. G. On the substructure of single-crystal GTE blades / Aviats. Promyshl. 2009. N 1. P 34 - 36 [in Russian].

15. Tolorayiya V N., Kablov E. N., Svetlov I. L. Growth texture with directed crystallization of Nickel heat-resistant alloys / MiTOM. 2006. N 8. P 25 - 32 [in Russian].

16. Khayutin S. G., Yakovleva Yu. V On the orientation of a substructure in single crystals / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 4. P 42 - 44 [in Russian].

17. Rtischev V. V, Gursky G. L., Bavelsky D. M. The Influence of technological factors on the structural fatigue strength of turbine blades made by directional solidification / Tr. TsKTI. 1987. Vol. 237. P 105 - 116 [in Russian].

18. Nazarkin R. M., Kolodochkina V G., et al. Irreversible changes in the fine structure of single crystals of heat-resistant Nickel alloys during long-term operation of turbine blades / Aviats. Mater. Tekhnol. 2015. N 12. P 21 - 39 [in Russian].

19. Shorr В. E, Melnikova G. V. Some questions of the dynamics of single crystal turbine blades / Probl. Mashinostr. Nadezhn. Mashin. 2010. N 4. P 33 - 40 [in Russian].

20. Vorob'ev Yu. S., Chugai M. A., Kulishov S. В., Skritskii A. N. Influence of crystallography orientation on vibrations of gas-turbine wheel with an uncooled single-crystal blades / Vestn. Dvigatelestr. 2010. N 2. P 105 - 108 [in Russian].

21. Kolesnikov V. I., Roadside R. P., Sheremet A. V Influence of crystallographic orientation on static strength and fatigue of single-crystal blades / Aviats.-Kosm. Tekhn. Tekhnol. 2001. Vol. 26. P 132 - 135 [in Russian].

22. Tikhomirova E. A., Ivashkin A. A., Sidorin E. F. On the study of crystallographic orientation on the performance properties of single crystal turbine blades / Vestn. SGAU. 2011. N 3(27). P 50 - 53 [in Russian].

23. Roadside R. P., Sheremet'ev A. V, Zinkovsky A. P. Influence of crystallographic orientation on the spectrum of natural frequencies and mode shapes of single-crystal turbine blades / Vestn. Dvigatelestr. 2006. N 2. P 42 - 48 [in Russian].

24. Morosov J. Effect of Secondary Orientation on Fatique Crack Growth in Single Crystal Turbine Blades. M.S. thesis. Mech. Eng. Dep. Univ. of Florida, Gainesville. FL. May, 1999.

25. Arakere N. K., Swanson G. Effect of Crystal Orientation on Fatique Failure of Single Crystale Nickel Base Turbine Blade Superalloys / Presented at the ASME IGTI conference May 8-11 , Munich, for accepted publication in the ASME Journal of Gas Turbines and Power. 2000. P 157 - 163.

26. Swanson G., Arakere N. K. Fatique Failure of Single Crystale Nickel Base Turbine Blade Superalloys / NASA Technical Paper TP-2000-210074.2000.

27. Yue Z. E, Lu Z. Z. Effect of crystal orientation on the creep resistance of single-crystal nickel-base superalloys / Mater. Sci. Technol. 2003. N 19(8). P 1012 - 1016.

28. Arakere N. K., Swanson G. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys. Eng. / Gas Turbines Power. 2002. Vol. 124. P 161 -175.

29. Hou N. X., Gou W. X., Wen Z. X., Yue Z. F. The influence of crystal orientation on fatique life of crystal cooled turbine blade / Mater. Sci. and Eng. A. 2008. Vol. 492. N 1-2. P 413 -418.

30. Aviation rules. Part 33. Norms of airworthiness of aircraft engines, interstate aviation Committee. — Moscow: Aviaizdat, 2012. — 46 p. [in Russian].

31. Structural strength of materials and details of GTE. A guide for designers / Tr. TsIAM. 1979. N 835. 522 p. [in Russian].

32. Kitagawa H., Takahashi S. ASM Proceedings of 2nd Int. Conf. on Mech. Behavior of Mat. Metal Park. Ohio, 1976. P 627.

33. Petukhov A. N., Kiselev F. D. Methodological aspects and results of diagnostics of damage, analysis of fatigue resistance and survivability of turbine blades of aircraft engines / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 3. P 41 - 51 [in Russian].


Review

For citations:


Petukhov A.N., Kiselev F.D. THE IMPACT OF STRESS CONCENTRATORS ON THE STRUCTURAL STRENGTH OF CAST TURBINE BLADES OF AIRCRAFT ENGINES. Industrial laboratory. Diagnostics of materials. 2019;85(5):52-66. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-5-52-66

Views: 594


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)