The modern methods of pin-type bearing test of metallic materials
https://doi.org/10.26896/1028-6861-2019-85-7-41-49
Abstract
The special features of various bearing deformation measurements for pin-type bearing tests of metallic materials are considered along with their impact on the magnitude of the «bearing elastic modulus» and bearing stress. These bearing test methods are present in ASTM and various institutional standards, though no state standard (GOST, GOST R) is currently available for bearing test method of metallic materials. Analysis of additional deformations which arise in determining the degree of hole bearing deformation is carried out. A set of sources of additional deformations is shown to be characteristic for each test procedure and is attributed to the design features of the device, the site and a way of mounting the extensometer. Additional deformations can be both tensile and compressive. It is shown that the impact of additional deformations on the «bearing elastic modulus» is limited to 14% for different procedures. No difference between the methods is revealed with regard to determination of the strength characteristics. At the same time the dispersion decreases with increase in plastic deformation and for bearing deformation about 4% the variation coefficient for all methods is no more than 1%. Advantages and shortcomings of the bearing test methods which affect the reproducibility of the results are considered. The effect of the specimen geometry on the bearing characteristics is considered. It is shown that increase both in the distance from the edge of the bearing specimen to the center of the hole for 1163T, VT6ch, 30KhGSA alloys and residual bearing deformation up to 6%, increase bearing strength characteristics.
About the Authors
Yaroslava V. SuliminaRussian Federation
ul. Radio, d. 17, Moscow, 105005
Nikolay O. Yakovlev
Russian Federation
ul. Radio, d. 17, Moscow, 105005
Vladimir S. Erasov
Russian Federation
ul. Radio, d. 17, Moscow, 105005
Aleksey Yu. Ampilogov
Russian Federation
68, Leningradskiy prosp., d. 68, Moscow, 125315
Andrey N. Polyakov
Russian Federation
68, Leningradskiy prosp., d. 68, Moscow, 125315
Vitaly V. Avtaev
Russian Federation
ul. Radio, d. 17, Moscow, 105005
Evgeniy I. Smagin
Russian Federation
68, Leningradskiy prosp., d. 68, Moscow, 125315
Oleg I. Shchiglik
Russian Federation
68, Leningradskiy prosp., d. 68, Moscow, 125315
References
1. Kablov E. N. The materials and chemical technologies for the aircraft engineering / Herald of the Russian Academy of Sciences 2012. Vol. 82. N 3. P. 158 – 167.
2. Yakovlev N. O., Erasov V. S., Petrova A. P. Comparison of the different countries regulatory bases on testing of materials glue connections / Vse Mater. Éntsikloped. Sprav. 2014. N 7. P. 2 – 8 [in Russian].
3. Konovalov V. V. Certification methodology of airframe constructional metal materials airframe / Trudy TsAGI. 2013. Issue 2725. P. 214 [in Russian].
4. Erasov V. S., Grinevich A. V., Senik V. Ya., Konovalov V. V., Trunin Yu. P., Nesterenko G. I. The calculated values of aviation materials strength characteristics / Aviats. Mater. Tekhnol. 2012. N 2. P. 14 – 16 [in Russian].
5. Lutsenko A. N., Slavin A. V., Erasov B. S., Khvatskiy K. K. Strength tests and researches of aviation materials / Aviats. Mater. Tekhnol. 2017. N S. P. 527 – 546. doi: 10.18577/2071-9140-2017-0-S-527-546 [in Russian].
6. Dimitrienko Yu. I., Gubareva E. A., Sborshchikov S. V., Erasov V. S., Yakovlev N. O. Numerical modeling and experimental research of bearing deformation elastic-plastic plates / Matem. Model. Chisl. Met. 2015. N 1(5). P. 67 – 82 [in Russian].
7. Erasov V. S., Yakovlev N. O., Avtaev V. V. Modern state of laboratory named after professor S. I. Kishkina / Aviats. Mater. Tekhnol. 2014. N S4. P. 136 – 139. doi: 10.18577/2071-9140-2014-0-s4-136-139.
8. Tarasov Yu. M., Antipov V. V. The VIAM new materials — for JSC «OAK» the perspective aviation equipment / Aviats. Mater. Tekhnol. 2012. N 2(23). P. 5 – 6 [in Russian].
9. Antipov V. V. Prospects for development of aluminum, magnesium and titanium alloys for aerospace engineering / Aviats. Mater. Tekhnol. 2017. N S. P. 186 – 194. doi: 10.18577/2071-9140-2017-s4-186-194.
10. Kablov E. N. A Materials of new generation / Zashch. Bezopasn. 2014. N 4. P. 28 – 29 [in Russian].
11. Antipov V. V. The development strategy of titanium, magnesium, beryllium and aluminum alloys / Aviats. Mater. Tekhnol. 2012. N S. P. 157 – 167 [in Russian].
12. Erasov V. S., Nyzhniy G. A. Determination of the pin-type bearing characteristics at mechanical tests / Comments to standards specifications certificates. Monthly supplement to Vse Mater. Éntsikloped. Sprav. 2012. N 1. P. 14 – 21 [in Russian].
13. RF Pat. 102801. Device for testing of constructional materials / Erasov V. S., Bairamukov R. R., Yakovlev N. O., Nuzhniy G. A.; Minpromtorg: N 2010142213/28; appl. 15.10.2010; publ. 10.03.2011. Byull. N 7 [in Russian].
14. RF Pat. 2618489. Device for testing construction materials for crushing, and test method of crushing / Kablov E. N., Lavrov A. V., Erasov V. S., Oreshko E. I.; FGUP «VIAM»: N 2016114303; appl. 13.04.2016; publ. 03.05.2017. Byull. N 13 [in Russian].
15. Kablov E. N. FSUE «VIAM» SRC RF innovative development for the implementation «The development strategic directions of materials and processing technologies for the period up to 2030» / Aviats. Mater. Tekhnol. 2015. N 1(34). P. 3 – 33. doi: 10.18577/2071-9140-2015-0-1-3-33 [in Russian].
Review
For citations:
Sulimina Ya.V., Yakovlev N.O., Erasov V.S., Ampilogov A.Yu., Polyakov A.N., Avtaev V.V., Smagin E.I., Shchiglik O.I. The modern methods of pin-type bearing test of metallic materials. Industrial laboratory. Diagnostics of materials. 2019;85(7):41-49. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-7-41-49