Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Permanent Sorbent-Modifiers for Electrothermal Atomic Absorption Determination of Arsenic with Photochemical Vapor Generation

Abstract

The properties of permanent sorbent-modifiers (iridium, zirconium and tungsten carbides) are investigated with regard to trapping gaseous trimethylarsine and subsequent electrothermal atomic absorption determination of arsenic. Trimethylarsine is produced by photochemical vapor generation using an original reactor. Introduction of the activated carbon upon graphite furnace treatment with tungsten appeared expedience for production of carbide nanoparticles which enhance sorption efficiency. The parameters of photochemical vapor generation of trimethylarsine and thermal conditions of its trapping and atomization are optimized. The developed analytical scheme is applied for As determination in tap water. The absolute and concentration limits of As detection (calculated by 3s-criterion) are 0.38 ng and 31 ng/liter, respectively.

About the Authors

M. Yu. Burylin
Кубанский государственный университет
Russian Federation


K. A. Romanovskii
Кубанский государственный университет
Russian Federation


A. V. Knyaginichev
Кубанский государственный университет
Russian Federation


References

1. Sturgeon R. Vapor generation for atomic spectroscopy / Anal. Bioanal. Chem. 2007. Vol. 388. N 4. P. 733 - 734.

2. Matusiewicz H., Sturgeon R. Atomic spectrometric detection of hydride forming elements following in situ trapping within a graphite furnace / Spectrochim. Acta. Part B. 1996. Vol. 51. N4. P. 377-397.

3. Laborda F. et al. Hydride generation in analytical chemistry and nascent hydrogen: when is it going to be over? / Spectrochim. Acta. Part B. 2002. Vol. 57. N 4. P. 797 - 802.

4. Wu P. et al. Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry / J. Anal. Atom. Spectrom. 2010. Vol. 25. N 8. P. 1217 - 1246.

5. Yin Y., Liu J., Jiang G. Photo-induced chemical-vapor generation for sample introduction in atomic spectrometry / TrAC. 2011. Vol. 30. N10. P. 1672- 1684.

6. Tsalev D. et al. Thermally stabilized iridium on an integrated carbide-coated platform as a permanent modifier for hydride-forming elements in electrothermal atomic absorption spectrometry. Part I. Optimization studies / J. Anal. Atom. Spectrom. 1995. Vol. 10. N 11. P. 1003 - 1009.

7. Бурылин М. Ю. и др. Характеристики новых перманентных модификаторов для гидридного атомно-абсорбционного определения мышьяка с концентрированием арсина в графитовой печи / Аналитика и контроль. 2011. Т. 15. № 1. С. 23 - 36.

8. Пат. 144061 РФ. Фотохимический генератор газообразных соединений / Бурылин М. Ю., Романовский К. А. Опубл. 2014, бюл. № 22.

9. Пат. 149755 РФ. Фотохимический генератор газообразных соединений / Бурылин М. Ю., Романовский К. А. Опубл. 2015, бюл. № 2.

10. Qin D. et al. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction / Spectrochim. Acta. Part B. 2013. Vol. 88. P. 10 - 14.

11. Zheng C. et al. Versatile thin-film reactor for photochemical vapor generation / Anal. Chem. 2010. Vol. 82. N 7. P. 3086 -3093.

12. Tsalev D. L. et al. Thermally stabilized iridium on an integrated, carbide-coated platform as a permanent modifier for hydride-forming elements in electrothermal atomic absorption spectrometry. Part 2. Hydride generation and collection, and behaviour of some organoelement species / J. Anal. Atom. Spectrom. 1996. Vol. 11. N10. P. 979-988.

13. Tsalev D. L. et al. Permanent modification in electrothermal atomic absorption spectrometry - advances, anticipations and reality / Spectrochim. Acta. Part B. 2000. Vol. 55. P. 473 - 490.

14. Drasch G., Meyer L., Kauert G. Anwendung der graphitrohrküvette zur arsenbestimmung in biologischen proben mit der hydrid-AAS-technik / Fresenius’ Zeitschrift für analytische Chemie. 1980. Vol. 304. P. 141 - 142.

15. Madden J. T., Fitzgerald N. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury / Spectrochim. Acta Part В. 2009. Vol. 64. N 9. P. 925 - 927.

16. de Jesus A. et al. Determination of mercury in gasoline by photochemical vapor generation coupled to graphite furnace atomic absorption spectrometry / Microchem. J. 2014. Vol. 117. P. 100- 105.

17. Guo X. et al. Vapor generation by UV irradiation for sample introduction with atomic spectrometry / Anal. Chem. 2004. Vol. 76. N8. P. 2401 -2405.

18. Guo X. et al. Photochemical alkylation of inorganic arsenic Part 1. Identification of volatile arsenic species / J. Anal. Atom. Spectrom. 2005. Vol. 20. P. 702 - 708.

19. Sturgeon R. E., Willie S. N., Mester Z. UV/spray chamber for generation of volatile photo-induced products having enhanced sample introduction efficiency / J. Anal. Atom. Spectrom. 2006. Vol. 21. N 3. P. 263 - 265.

20. Zheng C. et al. UV photochemical vapor generation-atomic fluorescence spectrometric determination of conventional hydride generation elements / Microchem. J. 2010. Vol. 95. P. 32 - 37.

21. Zheng C. et al. Versatile thin-film reactor for photochemical vapor generation / Anal. Chem. 2010. Vol. 82. N 7. P. 3086-3093.

22. Sigrist M. et al. Distribution of inorganic arsenic species in groundwater from Central-West Part of Santa Fe Province, Argentina / Appl. Geochem. 2013. Vol. 39. P. 43 - 48.

23. ГОСТ P 51766-2001. Сырье и продукты пищевые. Атомно-абсорбционный метод определения мышьяка. - М.: Изд-во стандартов, 2011. - 10 с.

24. World Health Organization. Guidelines for drinking-water quality, fourth edition. WHO publications. 2011. P. 315. URL: http://whqlibdoc.who.int/publications/2011/ 9789241548151_eng.pdf?ua=1 (дата обращения 24.02.2015).


Review

For citations:


Burylin M.Yu., Romanovskii K.A., Knyaginichev A.V. Permanent Sorbent-Modifiers for Electrothermal Atomic Absorption Determination of Arsenic with Photochemical Vapor Generation. Industrial laboratory. Diagnostics of materials. 2015;81(9):12-18. (In Russ.)

Views: 390


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)