

Sorption of Se (IV) from aqueous solutions with subsequent determination by X-ray fluorescence analysis
https://doi.org/10.26896/1028-6861-2020-86-10-5-9
Abstract
An approach to sorptive separation of Se (IV) from solutions on a novel S,N-containing sorbent with subsequent determination of the analyte in the sorbent phase by micro-x-ray fluorescence method is presented. The sorbent copolymethylenesulfide-N-alkyl-methylenamine (CMA) was synthesized using «snake in the cage» procedure and proven to be stable in acid solutions. Conditions for quantitative extraction of Se (IV) were determined: sorption in 5 M HCl or 0.05 M HNO3 solutions when heated to 60°C, phase contact time being 1 h. The residual selenium content in the solution was determined by inductively coupled plasma mass spectrometry (ICP-MS) using 82Se isotope. The absence of selenium losses is proved and the mechanism of sorption interaction under specified conditions is proposed. The method of micro-x-ray fluorescence analysis (micro-RFA) with mapping revealed a uniform distribution of selenium on the sorbent surface. The possibility of determining selenium in the sorbent phase by micro-RFA is shown. When comparing the obtained results with the results of calculations by the method of fundamental parameters, it is shown the necessity of using standard samples of sorbates to obtain correct results of RFA determination of selenium in the sorbent phase.
About the Authors
D. G. FilatovaRussian Federation
Darija G. Filatova
Department of Chemistry
GSP-1, 1-3 Leninskiye Gory, Moscow, 119191
A. A. Arkhipenko
Russian Federation
Alexandra A. Arkhipenko
Department of Chemistry
GSP-1, 1-3 Leninskiye Gory, Moscow, 119191
M. A. Statkus
Russian Federation
Mikhail A. Statkus
Department of Chemistry
GSP-1, 1-3 Leninskiye Gory, Moscow, 119191
V. V. Es’kina
Russian Federation
Vasilina V. Es’kina
5-1 B. Tolmachevsky per., Moscow, 119017
V. B. Baranovskaya
Russian Federation
Vasilisa B. Baranovskaya
31 Leninsky prosp., Moscow, 119991
Yu. A. Karpov
Russian Federation
Yury A. Karpov
31 Leninsky prosp., Moscow, 119991
References
1. Adedara I., Fabunmi A., Folashade C. Neuroprotective mechanisms of selenium against arsenic-induced behavioral impairments in rats / Neurotoxicology. 2020. Vol. 76. P. 99 – 110. DOI: 10.1016/j.neuro.2019.10.009.
2. Etteieb S., Magdouli S., Zolfaghari M., Brar S. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review / Sci. Total Environ. 2020. Vol. 698. Article 134339. DOI: 10.1016/j.scitotenv.2019.134339.
3. Yücel M. U., Basbugan Y., Uyar A., et al. Use of an antiarrhythmic drug against acute selenium toxicity / J. Trace Elem. Med. Biol. 2020. Vol. 59. 126471. DOI: 10.1016/j.jtemb.2020.126471.
4. Carnrick G. R., Manning D. C., Slavin W. Determination of selenium in biological materials with platform furnace atomic-absorption spectroscopy and Zeeman background correction / Analyst. 1983. Vol. 108. P. 1297 – 1312. DOI: 10.1039/an9830801297.
5. Bolea-Fernandez E., Balcaen L., Resano M., Vanhaecke F. Interference-free determination of ultra-trace concentrations of arsenic and selenium using methyl fluoride as a reaction gas in ICP-MS/MS / Anal. Bioanal. Chem. 2015. Vol. 407. P. 919 – 929. DOI: 10.1007/s00216-014-8195-8.
6. Pinho J., Canário J., Cesário R., Vale C. A rapid acid digestion method with ICP-MS detection for the determination of selenium in dry sediments / Anal. Chim. Acta. 2005. Vol. 551. P. 207 – 212. DOI: 10.1016/j.aca.2005.07.002.
7. Xiong C., He M., Hu B. On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry / Talanta. 2008. Vol. 76. P. 772 – 779. DOI: 10.1016/j.talanta.2008.04.031.
8. Latorre C. H., García J. B., Martín S. G. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review / Anal. Chim. Acta. 2013. Vol. 804. P. 37 – 49. DOI: 10.1016/j.aca.2013.09.054.
9. Sahina F., Volkana M., Howard A., Atamana O. Selective pre-concentration of selenite from aqueous samples using mercapto-silica / Talanta. 2003. Vol. 60. P. 1003 – 1009. DOI: 10.1016/S0039-9140(03)00154-1.
10. Serra A. M., Estela J. M., Coulomb B., et al. Solid phase extraction — Multisyringe flow injection system for the spectrophotometric determination of selenium with 2,3-diaminonaphthalene / Talanta. 2010. Vol. 81. P. 572 – 577. DOI: 10.1016/j.talanta.2009.12.045.
11. McCurdy E. J., Lange J. D., Haygarth P. M. The determination of selenium in sediments using hydride generation ICP-MS / Sci. Total Environ. 1993. Vol. 135. P. 131 – 136. DOI: 10.1016/0048-9697(93)90283-C.
12. Kocot K., Leardi R., Walczak B., Sitko R. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction / Talanta. 2015. Vol. 134. P. 360 – 365. DOI: 10.1016/j.talanta.2014.11.036.
13. Dal’nova O. A., Baranovskaya V. B., Dal’nova Yu. S., Karpov Yu. A. New Complexing Polymer Aminothioether Sorbents in the Analytical Control of Recyclable Metal-Containing Raw Material of Rare and Noble Metals / J. Anal. Chem. 2018. Vol. 73. P. 221 – 227. DOI: 10.1134/S1061934818030036.
14. Filatova D. G., Doronina M. S., Dal’nova O. A., et al. Determination of Arsenic, Selenium, and Antimony by Inductively Coupled Plasma Mass Spectrometry Preceded by Group Sorption Isolation / Inorg. Mater. 2014. Vol. 50. N 14. P. 1417 – 1420. DOI: 10.1134/S0020168514140064.
Review
For citations:
Filatova D.G., Arkhipenko A.A., Statkus M.A., Es’kina V.V., Baranovskaya V.B., Karpov Yu.A. Sorption of Se (IV) from aqueous solutions with subsequent determination by X-ray fluorescence analysis. Industrial laboratory. Diagnostics of materials. 2020;86(10):5-9. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-10-5-9