Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the composition of low-molecular compounds in the oligomethylhydridesiloxanes

https://doi.org/10.26896/1028-6861-2021-87-1-5-11

Abstract

The presence of reactive hydrogen-silyl (SiH) bonds in oligomethylhydrosiloxanes provided their widespread use in the building, paper, textile and rubber industries. Low molecular weight fractions of methylhydrosiloxanes, both cyclic and linear, negatively affect the performance of oligomer-based materials. The main goal of the present study is detection and identification of these fractions in the commercial product 136-157M, as well as in the co-oligomers synthesized from it. A method of gas chromatography-mass spectrometry was used in the study. First, we proved that an increase in the temperature of the column and evaporator from 60°C to 300°C does not change the composition of the low molecular weight fractions. Consequently, no depolymerization processes related to the formation of low-molecular-weight compounds occur during the analysis. To perform a qualitative analysis, the components of low-molecular-weight fraction were separated on a capillary column and then identified using a mass detector with an ion trap. It is shown that electron ionization triggers fragmentation of molecules and the formation of positively charged ions. As for methylhydrosiloxanes, cations with a molecular weight of [M – 15]+ arising from the rupture of the carbon-silyl bond are formed first. Moreover, when such a rupture occurs in cyclosiloxanes with a total number of units of more than four, further dissociation processes can occur with the detachment of the neutral fragment (methylsilane) and the formation of bicyclosiloxane cations. Since the set of positive ions is individual for each of the components and depends on [M]+•, a component-wise description of the entire low molecular weight fraction becomes possible with a high degree of the reliability. It is sown that for the considered commercial sample it can be described by two homologous series — cyclic where m ≥ 4, and linear siloxanes where n ≥ 1

About the Authors

A. M. Filippov
RF State Scientific Center Joint Stock Company «State Research Institute for Chemistry and Technology of Organoelement Compounds» (JSC GNIIKhTÉOS)
Russian Federation

Alexander M. Filippov

38, Éntuziastov sh., Moscow, 105118



T. I. Shulyatieva
RF State Scientific Center Joint Stock Company «State Research Institute for Chemistry and Technology of Organoelement Compounds» (JSC GNIIKhTÉOS)
Russian Federation

Tamara I. Shulyatieva

38, Éntuziastov sh., Moscow, 105118



E. I. Karpenkov
RF State Scientific Center Joint Stock Company «State Research Institute for Chemistry and Technology of Organoelement Compounds» (JSC GNIIKhTÉOS)
Russian Federation

Egor I. Karpenkov

38, Éntuziastov sh., Moscow, 105118



P. A. Storozsenko
RF State Scientific Center Joint Stock Company «State Research Institute for Chemistry and Technology of Organoelement Compounds» (JSC GNIIKhTÉOS)
Russian Federation

Pavel A. Storozsenko

38, Éntuziastov sh., Moscow, 105118



References

1. Abe Y., Gunji T. Oligo- and polysiloxanes / Prog. Polym. Sci. 2004. Vol. 29. N 3. P. 149 – 182. DOI: 10.1016/j.progpolymsci.2003.08.003.

2. Chruściel J. J. Progress in the chemistry of polymethylhydrosiloxanes / Polimery. 1999. Vol. 44. N 7 – 8. P. 462 – 474. DOI: 10.14314/polimery.1999.462.

3. Jones R. G., Ando W., Chojnowski J. (eds.). Silicon-containing polymers. The science and technology of their synthesis and applications. — Springer Netherlands, 2000. — 768 p. DOI: 10.1007/978-94-011-3939-7.

4. Andrianov K. A. Methods of organoelement chemistry. — Moscow: Nauka, 1968. — 700 p. [in Russian].

5. Marciniec B. (ed.). Hydrosilylation: A Comprehensive Review on Recent Advances (Advances in Silicon Science). — Springer Netherlands, 2009. — 408 p. DOI: 10.1007/978-1-4020-8172-9.

6. Boehm P., Mondeshki M., Frey H. Polysiloxane-Backbone Block Copolymers in a One-Pot Synthesis: A Silicon Platform for Facile Functionalization / J. Macromol. Rapid Commun. 2012. Vol. 33. N 21. P. 1861 – 1867. DOI: 10.1002/marc.201200365.

7. Organosilicon hydrophobizing liquid 136-157 M. TU U 24.6-23849235-086-2001 [in Russian].

8. Liles D. T. The fascinating world of silicones and their impact on coatings: Part 1 / Coatings tech. 2012. Vol. 9. P. 59 – 66.

9. Boguszewska-Czubara A., Pasternak K. Silicon in medicine and therapy / J. Elem. 2011. Vol. 16. N 3. P. 489 – 497. DOI: 10.5601/jelem.2011.16.3.13.

10. Bazhant V., Khvalovski V., Ratouski I. Silicones. Organosilicon compounds, their preparation, properties and application. — Moscow: Gos. nauch.-tekhn. izd. khim. literatury, 1960. — 712 p. [in Russian].

11. Voronkov M. G., Shorokhov N. V. Water-repellent coatings in construction. — Riga: Izd. AN Latv. SSR, 1973. — 146 p. [in Russian].

12. Ogliani E., Yu L., Mazurek P., Skov A. L. Designing reliable silicone elastomers for high-temperature applications / Polym. Degrad. Stab. 2018. Vol. 157. P. 175 – 180. DOI: 10.1016/j. polymdegradstab.2018.10.012.

13. Islamova R. M., Dobrynin M. V., Vlasov A. V. Iridium catalysed cross-linking of polysiloxanes leading to the thermally resistant luminescent silicone rubbers / Catal. Sci. Technol. 2017. Vol. 7. P. 5843 – 5846. DOI: 10.1039/c7cy02013a.

14. Thami T., Tauk L., Flaud V. Controlled structure and hydrophilic property of polymethylhydrosiloxane thin films attached on silicon support and modified with phosphorylcholine group / Thin Solid Films. 2020. Vol. 709. P. 1 – 43. DOI: 10.1016/j.tsf.2020.138196.

15. Mejía E. Investigations on the Hydrosilylation of Allyl Cyanide: Synthesis and Characterization of Cyanopropyl-Functionalized Silicones / Eur. Polym. J. 2020. Vol. 122. P. 1 – 6. DOI: 10.1016/j.eurpolymj.2019.109377.

16. Naganawa Yu., Inomata K., Sato K., Nakajima Yu. Hydrosilylation reactions of functionalized alkenes / Tetrahedron Lett. 2019. Vol. 61. N 11. P. 1 – 13. DOI: 10.1016/j.tetlet.2019.151513.

17. Kopylov V. M., Khananashvili L. M., Shkolnik O. V., et al. Hydrolytic polycondensation of organochlorosilanes (review) / Polymer Sci. A. 1995. Vol. 37. N 3. P. 394 – 416 [in Russian].

18. González J. A., Contreras L. D., Balcázar J. A., et al. Influential Factors in the Synthesis of Polymethylhydrogenosiloxane Obtained via Cationic Ring-Opening Polymerization Using Synthetic Silica-Aluminates as Catalysts / Silicon. 2020. Vol. 12. P. 1059 – 1074. DOI: 10.1007/s12633-019-00208-3.

19. Chainet F., Courtiade M., Lienemann C., et al. Silicon speciation by gas chromatography coupled to mass spectrometry in gasolines / J. Chromatogr. A. 2011. Vol. 1218. N 51. P. 9269 – 9278. DOI: 10.1016/j.chroma.2011.10.047.

20. Agilent Technologies. NIST Mass Spectral Library. Revision 2011. October 2011.

21. Orlov V. Yu. Dissociation of methylsiloxanes by electron impact / Zh. Obsch. Khimii. 1967. Vol. 37. N 9. P. 2300 – 2307 [in Russian].

22. Orlov V. Yu. Mass spectra of organometallic compounds of group IVb / Rus. Chem. Rev. 1973. Vol. 42. N 7. P. 529 – 537. DOI: 10.1070/RC1973v042n07ABEH002662.

23. Orlov V. Yu., Guriev M. V. Rearrangement ions in the mass spectra of methylsiloxanes / Khimiya Vysok. Énergii. 1968. Vol. 2. P. 497 – 500 [in Russian].


Review

For citations:


Filippov A.M., Shulyatieva T.I., Karpenkov E.I., Storozsenko P.A. Study of the composition of low-molecular compounds in the oligomethylhydridesiloxanes. Industrial laboratory. Diagnostics of materials. 2021;87(1):5-11. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-1-5-11

Views: 459


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)