Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of As, Bi, Pb, Sb, Sn in copper, nickel and alloys on their base by electrothermal atomization atomic absorption spectrometry (ETAAS)

https://doi.org/10.26896/1028-6861-2021-87-1-12-22

Abstract

Copper and nickel-based alloys are widely used in various industrial settings. Their properties directly depend on the impurities and alloying additives present. Therefore, monitoring of their content in the composition of alloys is still an urgent task. Analytical characteristics of the methods used for determination As, Bi, Pb, Sb, and Sn in copper, nickel, and alloys on their base are studied using electrothermal atomic absorption spectrometry (ETAAS) with selective radiation sources, deuterium background correction, longitudinally heated graphite tube, and high-resolution ETAAS with a continuous source and a transversely heated atomizer. The parameters of the temperature program of the atomizer were optimized for both version of the atomic absorption spectrometry. The revealed interfering effect of the matrix (Cu and Ni) of the studied samples significantly distorts the analytical signals of the analytes and results in significant non-selective absorption. It is shown that when constructing calibration dependencies using ETAAS with selective radiation sources, it is necessary to add a matrix component to the calibration solutions, whereas for high-resolution ETAAS it is possible to avoid introduction of the matrix component without increasing the error of analysis. The developed procedures were tested in analysis of the high-purity copper and nickel samples and standard samples of the composition of the alloys based on copper VSM14-5 (rough copper), VSM14-6 (bronze), and nickel VSN2-2. The achieved detection limits for high-resolution ETAAS with a continuous source leveled at n × 10–5 %, whereas for low-resolution ETAAS with selective radiation sources the detection limits were higher by an order of magnitude. To determine lower concentrations of the elements in such materials, separation of the sample matrix should be used.

About the Authors

M. Yu. Burylin
Kuban State University
Russian Federation

Mikhail Yu. Burylin

149, Stavropol’skaya st., Krasnodar, 350040



E. S. Kopeiko
Kuban State University
Russian Federation

Elena S. Kopeiko

149, Stavropol’skaya st., Krasnodar, 350040



References

1. Karandashev V. K., Zhernokleeva K. V., Baranovskaya V. B., Karpov Yu. A. Analysis of high-purity materials by inductively coupled plasma mass spectrometry (Review) / Inorg. Mater. 2013. Vol. 49. N 14. DOI: 10.1134/S0020168513140057.

2. Pupyshev A. A., Danilova D. A. The use of inductively coupled plasma atomic emission spectrometry for analysis of materials and ferrous metallurgy products / Analit. Kontrol’. 2007. Vol. 11. N 2 – 3. P. 131 – 181 [in Russian].

3. Lange B., Recknagel S., Czerwensky M., et al. Analysis of pure copper — a comparison of analytical methods / Microchim. Acta. 2008. Vol. 160. P. 97 – 107. DOI: 10.1007/s00604-007-0849-1.

4. Pupyshev A. A., Obogrelova S. A. Thermal stabilization of selenium in a graphite furnace at the pyrolysis stage in the presence of a nickel chemical modifier / Analit. Kontrol’. 2001. Vol. 5. N 3. P. 275 – 288 [in Russian].

5. Hinds M. W. Determination of Base Metals in Fine Silver by Electrothermal Atomic Absorption Spectrometry With a Fast Temperature Programme / J. Anal. At. Spectrom. 1992. Vol. 7. P. 685 – 688. DOI: 10.1039/ja9920700685.

6. Carrion N., Itriago A. M., Alvarez M. A., Eljuri E. Simultaneous determination of lead, nickel, tin, and copper in aluminium-base alloys using slurry sampling by electrical discharge and multielement ETAAS / Talanta. 2003. Vol. 61. P. 621 – 632. DOI: 10.1016/s0039-9140(03)00363-1.

7. Yang K. X., Lonardo R. F., Liang Z., et al. Determination of tin in nickel-based alloys by electrothermal laser-excited atomic fluorescence with confirmation of accuracy by inductively coupled plasma mass spectrometry and atomic absorption spectrometry / J. Anal. At. Spectrom. 1997. Vol. 12. P. 369 – 373. DOI: 10.1039/a605573g.

8. Pupyshev A. A. Atomic absorption spectral analysis. — Moscow: Tekhnosfera, 2009. P. 532 – 583 [in Russian].

9. Welz B., Becker-Ross H., Florek S., Heitmann U. High-Resolution Continium Source AAS: The Better Way to Do Atomic Absorption Spectrometry. — Weinheim, Germany: Wiley-VCH, 2005. P. 31 – 52.

10. Burylin M., Pupyshev A. Atomic absorption spectrometry. Electrothermal / Encyclopedia of Analytical Science (3rd ed.). — Elsevier BV, 2019. Vol. 1. P. 117 – 128. DOI: 10.1016/B978-0-12-409547-2.14520-2.

11. Pupyshev A. A. The high-resolution continiuum source atomic absorption spectrometers / Analit. Kontrol’. 2008. Vol. 12. N 3 – 4. P. 62 – 92 [in Russian].

12. Burylin M. Yu., Zaikovsky V. I., Romanovskiy K. A., Arushanian P. R. The characteristics of new permanent sorbent-modifiers for the arsenic hydride generation atomic absorption spectrometric determination with trapping of the arsine in a graphite furnace / Analit. Kontrol’. 2011. Vol. 15. N 1. P. 23 – 36 [in Russian].

13. Romanovskiy K. A., Bolshov M. A., Münz A. V., et al. A novel photochemical vapor generator for ICP-MS determination of As, Bi, Hg, Sb, Se and Te / Talanta. 2018. Vol. 187. N 9. P. 370. DOI: 10.1016/j.talanta.2018.05.052.


Review

For citations:


Burylin M.Yu., Kopeiko E.S. Determination of As, Bi, Pb, Sb, Sn in copper, nickel and alloys on their base by electrothermal atomization atomic absorption spectrometry (ETAAS). Industrial laboratory. Diagnostics of materials. 2021;87(1):12-22. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-1-12-22

Views: 500


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)