Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The effect of alloying additives on the magnetic permeability and permittivity of ferrite spinel

https://doi.org/10.26896/1028-6861-2021-87-1-30-34

Abstract

Coatings made of the materials that effectively absorb radiation, e.g., ferrite materials, are used to reduce the level of electromagnetic radiation in rooms containing household or industrial equipment. It is known that significant dissipation of the radiation energy is provided by the thickness of the shielding coating which should be comparable to the length of the electromagnetic wave in the material which, in turn, significantly decreases at high values of the magnetic permeability and permittivity of the radio-absorbing material. Ferrite radio-absorbing coatings are characterized by the high heat resistance, low flammability and small (10 – 20 mm) thickness. However, at frequencies less than 40 MHz, plates with a thickness of more than 30 mm are to be used to provide the effective absorption, and the weight and cost of the coatings increase significantly. The results of studying the effect of the sintering temperature and micro-additives of titanium, calcium and bismuth oxides on the dielectric constant of Ni- and Mn-Zn radio-absorbing ferrites are presented. Reactively pure starting oxide components with a basic substance content of more than 99.6 % wt. were used to synthesize samples using traditional oxide technology. It is shown that alloying with bismuth and titanium oxides is rather effective for obtaining radio-absorbing ferrites with a combination of high values of the magnetic permeability and dielectric permittivity. The obtained results can be used in production of ferrite radio- absorbing materials operating in the megahertz range.

About the Authors

V. G. Kostishin
NUST «MISiS»
Russian Federation

Vladimir G. Kostishin

4, Leninsky pr., Moscow, 117409



R. M. Vergazov
College of Electronic Technologies
Russian Federation

Rashit M. Vergazov

34a, ul. Komsomolskaya, Kuznetsk, Penza obl., 442500



S. B. Menshova
School N 950
Russian Federation

Svetlana B. Menshova

11b, ul. Otradnaya, Moscow, 127273



I. M. Isaev
NUST «MISiS»
Russian Federation

Igor M. Isaev

4, Leninsky pr., Moscow, 117409



A. V. Timofeev
NUST «MISiS»
Russian Federation

Andrey V. Timofeev

4, Leninsky pr., Moscow, 117409



References

1. Detlaf A. A., Yavorskiy V. M. Physics course: textbook for technical colleges. — Moscow: Akademiya, 2008. — 720 p. [in Russian].

2. Alekseyev A. G., Shtager E. A., Kozyrev S. V. Physical foundations of Stealth technology. — St. Petersburg: VVM, 2007. — 284 p. [in Russian].

3. Maria K. H., Akther U. S., Esha I. N., Hossain M. S., et al. Estimation of Structural, Electrical, and Magnetic Variations of Mn-Ni-Zn Ferrites by Substituting Rare Earth Y3+ for High-Frequency Applications / J. Supercond. Novel Magn. 2020. Vol. 33. Issue 7. P. 2133 – 2142. DOI: 10.1007/s10948-020-05471-9.

4. Das B., Alam F., Akther A. The crystallographic, magnetic, and electrical properties of Gd3+-substituted Ni-Cu-Zn mixed ferrites / J. Phys. Chem. Solids. 2020. Vol. 142. Art. N 109433. DOI: 10.1016/j.jpcs.2020.109433.

5. Letyuk L. M., Zhuravlev G. I. Ferrite chemistry and technology. — Leningrad: Khimiya, 1983. — 258 p. [in Russian].

6. Antsiferov V. N., Letyuk L. M., Andreev V. G., Gonchar A. V., et al. Problems of powder materials science. Part 5. Technology of production of powder ferrite materials. — Yekaterinburg: UrO RAN, 2005. — 408 p. [in Russian].

7. Smith Y., Wayne H. Ferrites. Physical properties and practical application. — Moscow: Izd. inostrannoi literatury, 1962. — 504 p. [Russian translation].

8. Krupichka S. Physics of ferrites and related magnetic oxides. — Moscow: Mir, 1976. — 354 p. [Russian translation].

9. Okajaki K. Ceramic dielectric technology. — Moscow: Énergiya, 1976. — 336 p. [Russian translation].

10. Pokusin D. N., Chukhlebov E. A., Zalessky M. Yu. Complex magnetic permeability of ferrites in the field of natural ferromagnetic resonance / Radiotekhn. Élektron. 1991. Vol. 36. N 11. P. 2085 – 2091 [in Russian].

11. Satyanarayana G., Rao G., Babu K., Kumar G., et al. Influence of chromium substitution on structural, electrical, and magnetic properties of Ni-Zn-Cu ferrites / Acta Phys. Pol. A. 2020. Vol. 138. Issue 3. P. 355 – 363. DOI: 10.12693/APhysPolA.138.355.

12. Henaish A., Mostafa M., Salem B., Hemeda O. Improvement of magnetic and dielectric properties of magnetoelectric BST-NCZMF nano-composite / Phase Transitions. 2020. Vol. 93. Issue 5. P. 470 – 490. DOI: 10.1080/01411594.2020.1758322.

13. Kostishin V. G., Vergazov R. M., Andreev V. G., Bibikov S. B., et al. Effect of microstructure on the properties of radio-absorbing nickel-zinc ferrites / Izv. Vuzov. Mater. Élektron. Tekhn. 2010. N 4. P. 18 – 21 [in Russian].

14. Gonchar A. V., Andreev V. G., Letyuk L. M., Krutogin D. G., et al. Possibilities of increasing the electromagnetic parameters of ferrites for television equipment / Izv. Vuzov. Mater. Élektron. Tekhn. 1998. N 1. P. 41 – 44 [in Russian].


Review

For citations:


Kostishin V.G., Vergazov R.M., Menshova S.B., Isaev I.M., Timofeev A.V. The effect of alloying additives on the magnetic permeability and permittivity of ferrite spinel. Industrial laboratory. Diagnostics of materials. 2021;87(1):30-34. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-1-30-34

Views: 546


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)