Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of the dissolved forms of silicon in natural drinking water using high-resolution continuum-source electrothermal atomic absorption spectrometry

https://doi.org/10.26896/1028-6861-2021-87-3-11-19

Abstract

A technique for the determination of dissolved forms of silicon in water using high-resolution continuum-source electrothermal atomic absorption spectrometry (HR-CS-ETAAS) is proposed. The quantitative determination of the dissolved forms of silicon was performed using an atomic absorption spectrometer ContrAA 700 with a graphite cross-heating cuvette. Natural water was selected to optimize the temperature-time program of the atomizer. To eliminate chemical interference during the silicon determination by HR-CS-ETAAS, the graphite cuvettes were modified with a permanent modifier to form a carbide coating. A solution of sodium tungstate was used as a permanent modifier. Thermal stabilization of silicon in a graphite furnace was achieved with a mixed palladium-magnesium modifier present in the nitrate form. The developed method was used for determination of the content of the dissolved forms of silicon in water. The developed technique was certified proceeding from the results of the research and the metrological examination by an organization accredited for this type of the activity and registered in Federal information Fund for ensuring the uniformity of measurements (FIF).

About the Authors

T. N. Shtin
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Tat’yana N. Shtin

30 Popova ul., Yekaterinburg, 620014



L. K. Neudachina
The first President of Russia B. N. Yeltsin Ural Federal University
Russian Federation

Lyudmila K. Neudachina

19 Mira ul., 620002, Yekaterinburg



S. A. Shtin
The first President of Russia B. N. Yeltsin Ural Federal University
Russian Federation

Sergei A. Shtin

19 Mira ul., 620002, Yekaterinburg



References

1. Gorbachev A. L. Elemental status of population in connection with chemistry of drinking water / Mikroélem. Med. 2006. Vol. 7. N 2. P. 11 – 24 [in Russian].

2. SanPiN 2.1.4.1074–01. Drinking water. Hygienic requirements for the water quality of centralized drinking water supply systems. Quality control. Hygienic requirements for ensuring the safety of hot water systems. — Moscow: Minzdrav Rossii, 2000. — 90 p. [in Russian].

3. GN 2.1.5.1315–03. Maximum permissible concentrations (MPC) of chemical substances in the water of water bodies of economic, drinking and cultural water use. — Moscow: Minzdrav Rossii, 2003. — 199 p. [in Russian].

4. Mansurova L. A., Fedchishin O. V., Trofimov V. V., et al. Physiological role of silicon / Sib. Med. Zh. 2009. Vol. 90. N 7. P. 16 – 18 [in Russian].

5. Avtsyn A. P., Zhavoronkov A. A., Rish M. A., Strochkova L. S. Human trace elements. — Moscow: Meditsina, 1991. — 496 p. [in Russian].

6. Suslikov V. L. Geochemical ecology of diseases. Vol. 2. Atomovites. — Moscow: Gelios ARV, 2000. — 672 p. [in Russian].

7. Rakhmanin Yu. A., Egorova N. A., Krasovskii G. N., et al. Silicon: its biological impact under dietary intake and hygienic standardization of its content in drinking water. A review / Gigiena Sanit. 2017. Vol. 96. N 5. P. 492 – 498. DOI: 10.18821/0016-9900-2017-96-5-492-498 [in Russian].

8. GOST R 57165–2016. Water. Determination of the element content by inductively coupled plasma atomic emission spectrometry. — Moscow: Standartinform, 2018. — 31 p. [in Russian].

9. PND F 14.1:2:4.135–98. Quantitative chemical analysis of water. Technique of execution of measurements of mass concentrations of elements in samples of drinking, natural, waste water and precipitation by the method of atomic emission spectrometry with inductively coupled plasma. — Moscow: Gos. Kom. RF po Okhr. Okr. Sredy, 1998. — 24 p. [in Russian].

10. GOST 31870–2012. Drinking water. Determination of the element content by atomic spectrometry. — Moscow: Standartinform, 2019. — 20 p. [in Russian].

11. RD 52.24.432–2018. Mass concentration of silicon in water. Method of measurement by photometric method in the form of a blue (reduced) form of molybdosilicic acid. — Rostov-on-Don: FGBU GKhI, 2018. — 25 p. [in Russian].

12. RD 52.24.433–2018. Mass concentration of silicon in water. Method of measurement by photometric method in the form of yellow form of molybdosilicic acid. — Rostov-on-Don: FGBU GKhI, 2018. — 25 p. [in Russian].

13. RD 52.10.744–2010. Mass concentration of silicon in seawater. Method of measurement by photometric method in the form of blue form of molybdosilicic acid. — Moscow: FGBU «GOIN», 2010. — 15 p. [in Russian].

14. PND F 14.1:2:4.215–06. Quantitative chemical analysis of water. Method for measuring the mass concentration of silicic acid (in terms of silicon) in drinking, surface and wastewater by photometric method in the form of yellow silicolybdenum heteropolyacid. — Moscow: FBU «FTsAO», 2006. — 18 p. [in Russian].

15. EPA Method 366.0. Determination of Dissolved Silicate in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis. — Ohio: National Exposure Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, 1997. — 13 p.

16. EPA Method 370. 1. Silica, Dissolved (Colorimetric). — USA: NPDES, 1978. — 6 p.

17. Saprygin A. V., Golik V. M., Trepachev S. V., et al. Silicon direct determination method development with dynamic reaction cell inductively coupled plasma mass spectrometry / Analitika i Kontrol’. 2011. Vol. 15. N 1. P. 64 – 75 [in Russian].

18. Abe K., Watanabe Y. Determination of Silicate in Seawater by Inductively Coupled Plasma Atomic Emission Spectrometry / J. Oceanogr. 1992. Vol. 48. N 3. P. 283 – 292. DOI: 10.1007/BF02233988

19. Santos M. A., Silva A. B. S., Machado R. C., et al. Silicon determination by microwave-induced plasma optical emission spectrometry: Considerations and strategies for the use of tetrafluorboric acid and sodium hydroxide in sample preparation procedures / Spectrochim. Acta. Part B. 2020. Vol. 167. N 5. P. 1 – 4. DOI: 10.1016/j.sab.2020.105842

20. Gómez-Nieto B., Gismera M. J., Sevilla M. T., et al. Straightforward silicon determination in water-in-oil-in-water emulsions used for silicon supplementations in food by high-resolution continuum source flame atomic absorption spectrometry / Spectrochim. Acta. Part B. 2018. Vol. 148. N 10. P. 44 – 50. DOI: 10.1016/j.sab.2018.06.001

21. Huang M. D., Krivan V. A direct solid sampling electrothermal atomic absorption spectrometry method for the determination of silicon in biological materials / Spectrochim. Acta. Part B. 2007. Vol. 62. N 3. P. 297 – 303. DOI: 10.1016/j.sab.2006.12.007

22. Kambalina M. G., Pikula N. P. Atomic absorption determination of silicon content in natural waters / Izv. Tomsk. Politekhn. Univ. 2012. Vol. 320. N 3. P. 120 – 124 [in Russian].

23. Burguera M., Burguera J. L., Carrero P., Rondon C. A flow injection-ETAAS system for the on-line determination of total and dissolved silica in waters / Talanta. 2002. Vol. 58. N 6. P. 1157 – 1166. DOI: 10.1016/S0039-9140(02)00205-9

24. Pupyshev A. A. The high-resolution continiuum source atomic absorption spectrometers / Analit. Kontrol’. 2008. Vol. 12. N 3 – 4. P. 64 – 92 [in Russian].

25. Filatova D. G., Es’kina V. V., Baranovskaya V. B., Karpov Yu. A. Present-day possibilities of high-resolution continuous-source electrothermal atomic absorption spectrometry / J. Anal. Chem. 2020. Vol. 75. N 5. P. 563 – 568. DOI: 10.1134/S1061934820050044

26. Nakadi F. V., Prodanov C., Boschetti W., et al. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry / Talanta. 2018. Vol. 179. N 3. P. 828 – 835. DOI: 10.1016/j.talanta.2017.12.022

27. Bok R. Decomposition methods in analytical chemistry. — Moscow: Khimiya, 1984. — 429 p. [in Russian].

28. Potapova V. G., Grebenyuk N. N., Blank A. B. Electrothermal atomic absorption determination of silicon in single crystals based on alkali metal halides / Zh. Analit. Khim. 1998. Vol. 53. N 8. P. 768 – 771 [in Russian].

29. Pupyshev A. A. Atomic absorption spectral analysis. — Moscow: Tekhnosfera, 2009. — 782 p. [in Russian].

30. Burylin M. Yu., Temerdashev Z. A. Permanent chemical modifiers in electrothermal atomic absorption spectroscopic analysis (review) / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 2. P. 16 – 23 [in Russian].

31. Volynskii A. B. Chemical modifiers based on platinum-group metal compounds in electrothermal atomic absorption spectrometry / J. Anal. Chem. 2004. Vol. 59. N 6. P. 502 – 520. DOI: 10.1023/B:JANC.0000030869.61576.d9


Review

For citations:


Shtin T.N., Neudachina L.K., Shtin S.A. Determination of the dissolved forms of silicon in natural drinking water using high-resolution continuum-source electrothermal atomic absorption spectrometry. Industrial laboratory. Diagnostics of materials. 2021;87(3):11-19. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-3-11-19

Views: 633


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)